高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于集成固有时间尺度分解的IFF辐射源个体识别算法

张玉 李天琪 张进 唐波

张玉, 李天琪, 张进, 唐波. 基于集成固有时间尺度分解的IFF辐射源个体识别算法[J]. 电子与信息学报, 2020, 42(2): 430-437. doi: 10.11999/JEIT190085
引用本文: 张玉, 李天琪, 张进, 唐波. 基于集成固有时间尺度分解的IFF辐射源个体识别算法[J]. 电子与信息学报, 2020, 42(2): 430-437. doi: 10.11999/JEIT190085
Yu ZHANG, Tianqi LI, Jin ZHANG, Bo TANG. Individual Recognition Algorithm of IFF Radiation Sources Based on Ensemble Intrinsic Time-scale Decomposition[J]. Journal of Electronics & Information Technology, 2020, 42(2): 430-437. doi: 10.11999/JEIT190085
Citation: Yu ZHANG, Tianqi LI, Jin ZHANG, Bo TANG. Individual Recognition Algorithm of IFF Radiation Sources Based on Ensemble Intrinsic Time-scale Decomposition[J]. Journal of Electronics & Information Technology, 2020, 42(2): 430-437. doi: 10.11999/JEIT190085

基于集成固有时间尺度分解的IFF辐射源个体识别算法

doi: 10.11999/JEIT190085
基金项目: 国家自然科学基金(61671453),安徽省自然科学基金(1608085MF123),国防科技大学自然科学基金(ZK18-03-19)
详细信息
    作者简介:

    张玉:男,1962年生,教授,硕士生导师,研究方向为雷达与通信中的信号处理

    李天琪:女,1994年生,硕士生,研究方向为信号与信息处理

    张进:男,1974年生,讲师,研究方向为阵列信号处理

    唐波:男,1985年生,副教授,研究方向为自适应阵列信号处理、雷达波形设计等

    通讯作者:

    李天琪 helen_0370@163.com

  • 中图分类号: TN958.96

Individual Recognition Algorithm of IFF Radiation Sources Based on Ensemble Intrinsic Time-scale Decomposition

Funds: The National Natural Science Foundation of China (61671453), The Natural Science Foundation of Anhui Province (1608085MF123), The Natural Science Foundation of National University of Defense Technology (ZK18-03-19)
  • 摘要:

    为研究敌我识别(IFF)辐射源信号的细微特征,针对目前在复杂噪声环境中IFF辐射源个体识别研究不足的问题,该文提出一种基于集成固有时间尺度分解的IFF辐射源个体识别算法。该算法应用集成固有时间尺度分解(EITD)将采样信号自适应划分为若干有实际意义的信号分量并求取IFF辐射源信号在时频域的能量分布图。通过对时频能量谱的纹理分析,以图像的纹理特征表征辐射源信号的无意调制特征,送入支持向量机(SVM)中进行分类识别。实验表明,所提算法相较于基于希尔伯特-黄变换(HHT)、基于固有时间尺度分解(ITD)的辐射源个体识别方法在识别准确度上有较大提升。

  • 图  1  本文算法流程图

    图  2  原始信号及EITD分解结果

    图  3  索贝尔算子图例

    图  4  不同辐射源信号的时频能量谱

    图  5  随信噪比变化时仿真信号的识别性能对比

    图  6  不同时频分析手段对识别率的影响

    图  7  训练样本个数对识别性能的影响

    表  1  各方法的平均运算时间(ms)

    方法ITDEMDEITDEITD (迭代次数5)
    运算时间8.419.021.310.2
    下载: 导出CSV
  • 谭源泉, 李胜强, 王厚军. 西方体制Mark XIIA的Mode5数据格式分析[J]. 电子科技大学学报, 2011, 40(4): 532–536. doi: 10.3969/j.issn.1001-0548.2011.04.011

    TAN Yuanquan, LI Shengqiang, and WANG Houjun. Analysis on data format of Mode 5 in western Mark XIIA[J]. Journal of University of Electronic Science and Technology of China, 2011, 40(4): 532–536. doi: 10.3969/j.issn.1001-0548.2011.04.011
    LIU Mingwei and DOHERTY J F. Nonlinearity estimation for specific emitter identification in multipath channels[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 1076–1085. doi: 10.1109/TIFS.2011.2134848
    龙慧敏. 基于时域调制域特征的 IFF 模式5信号识别[J]. 电讯技术, 2014, 54(7): 910–914. doi: 10.3969/j.issn.1001-893x.2014.07.009

    LONG Huimin. Identification of IFF Mode 5 signals based on time & modulation domain characteristics[J]. Telecommunication Engineering, 2014, 54(7): 910–914. doi: 10.3969/j.issn.1001-893x.2014.07.009
    李维科. 基于时域和编码特征的Mark XIIA IFF信号识别方法[J]. 兵器装备工程学报, 2016, 37(7): 153–157. doi: 10.11809/scbgxb2016.07.033

    LI Weike. Identification of Mark XIIA IFF signals based on time domain and coding characteristics[J]. Journal of Ordnance Equipment Engineering, 2016, 37(7): 153–157. doi: 10.11809/scbgxb2016.07.033
    许程成, 周青松, 张剑云, 等. 导数约束平滑条件下基于模糊函数特征的雷达辐射源信号识别方法[J]. 电子学报, 2018, 46(7): 1663–1668. doi: 10.3969/j.issn.0372-2112.2018.07.018

    XU Chengcheng, ZHOU Qingsong, ZHANG Jianyun, et al. Radar emitter recognition based on ambiguity function features with derivative constraint on smoothing[J]. Acta Electronica Sinica, 2018, 46(7): 1663–1668. doi: 10.3969/j.issn.0372-2112.2018.07.018
    WANG Xuebao, HUANG Gaoming, ZHOU Zhiwen, et al. Radar emitter recognition based on the energy cumulant of short time fourier transform and reinforced deep belief network[J]. Sensors, 2018, 18(9): 3103. doi: 10.3390/s18093103
    LIU Shaokun, YAN Xiaopeng, LI Ping, et al. Radar emitter recognition based on SIFT position and scale features[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65(12): 2062–2066. doi: 10.1109/TCSII.2018.2819666
    赵越, 陈之纯, 纠博, 等. 一种基于时频分析的窄带雷达飞机目标分类特征提取方法[J]. 电子与信息学报, 2017, 39(9): 2225–2231. doi: 10.11999/JEIT161204

    ZHAO Yue, CHEN Zhichun, JIU Bo, et al. Narrowband aircraft targets feature extraction and classification based on time-frequency analysis[J]. Journal of Electronics &Information Technology, 2017, 39(9): 2225–2231. doi: 10.11999/JEIT161204
    张天骐, 全盛荣, 强幸子, 等. 基于多尺度Chirplet稀疏分解和Wigner-Ville变换的时频分析方法[J]. 电子与信息学报, 2017, 39(6): 1333–1339. doi: 10.11999/JEIT160750

    ZHANG Tianqi, QUAN Shengrong, QIANG Xingzi, et al. Time-frequency analysis method based on multi-scale Chirplet sparse decomposition and Wigner-Ville transform[J]. Journal of Electronics &Information Technology, 2017, 39(6): 1333–1339. doi: 10.11999/JEIT160750
    任东方, 张涛, 韩洁, 等. 基于ITD与纹理分析的特定辐射源识别方法[J]. 通信学报, 2017, 38(12): 160–168. doi: 10.11959/j.issn.1000-436x.2017299

    REN Dongfang, ZHANG Tao, HAN Jie, et al. Specific emitter identification based on ITD and texture analysis[J]. Journal on Communications, 2017, 38(12): 160–168. doi: 10.11959/j.issn.1000-436x.2017299
    ZHANG Jingwen, WANG Fanggang, DOBRE O A, et al. Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(6): 1192–1205. doi: 10.1109/tifs.2016.2520908
    WU Zhaohua and HUANG N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1–41. doi: 10.1142/S1793536909000047
    FREI M G and OSORIO I. Intrinsic time-scale decomposition: Time-frequency-energy analysis and real-time filtering of non-stationary signals[J]. The Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 463(2078): 321–342. doi: 10.1098/rspa.2006.1761
    HU Aijun, YAN Xiaoan, and XIANG Ling. A new wind turbine fault diagnosis method based on ensemble intrinsic time-scale decomposition and WPT-fractal dimension[J]. Renewable Energy, 2015, 83: 767–778. doi: 10.1016/j.renene.2015.04.063
    HU Aijun, XIANG Ling, and GAO Nan. Fault diagnosis for the gearbox of wind turbine combining ensemble intrinsic time-scale decomposition with Wigner bi-spectrum entropy[J]. Journal of Vibroengineering, 2017, 19(3): 1759–1770. doi: 10.21595/jve.2017.17465
    丛蕊, 高光甫, 樊瑞筱, 等. 基于灰度-梯度共生矩阵和模糊核聚类的振动图形识别方法[J]. 振动与冲击, 2012, 32(21): 73–76. doi: 10.3969/j.issn.1000-3835.2012.21.015

    CONG Rui, GAO Guangfu, FAN Ruixiao, et al. Vibration image recognition method based on gray-gradient CO-occurrence matrix and kernel·-based fuzzy clustering[J]. Journal of Vibration and Shock, 2012, 32(21): 73–76. doi: 10.3969/j.issn.1000-3835.2012.21.015
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  2478
  • HTML全文浏览量:  1104
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-28
  • 修回日期:  2019-03-20
  • 网络出版日期:  2019-09-27
  • 刊出日期:  2020-02-19

目录

    /

    返回文章
    返回