DING Cunsheng, XIAO Guozhen, and SHAN Weijuan. The Stability Theory of Stream Ciphers[M]. Berlin, Heidelberg: Springer-Verlag, 1991: 251–321.
|
GOLOMB S W and GONG Guang. Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar[M]. Cambridge, UK: Cambridge University Press, 2005: 174–175.
|
SU Wei, YANG Yang, ZHOU Zhengchun, et al. New quaternary sequences of even length with optimal auto-correlation[J]. Science China Information Sciences, 2018, 61(2): 022308. doi: 10.1007/s11432-016-9087-2
|
DAI Zongduo, GONG Guang, and SONG H Y. A trace representation of binary Jacobi sequences[J]. Discrete Mathematics, 2009, 309(6): 1517–1527. doi: 10.1016/j.disc.2008.02.024
|
CHEN Zhixiong. Linear complexity of Legendre-polynomial quotients[J]. IET Information Security, 2018, 12(5): 414–418. doi: 10.1049/iet-ifs.2017.0307
|
李瑞芳, 柯品惠. 一类新的周期为2pq的二元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2014, 36(3): 650–654. doi: 10.3724/SP.J.1146.2013.00751LI Ruifang and KE Pinhui. The linear complexity of a new class of generalized cyclotomic sequences with period 2pq[J]. Journal of Electronics &Information Technology, 2014, 36(3): 650–654. doi: 10.3724/SP.J.1146.2013.00751
|
杜小妮, 王国辉, 魏万银. 周期为2p2的四阶二元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2015, 37(10): 2490–2494.DU Xiaoni, WANG Guohui, and WEI Wanyin. Linear complexity of binary generalized cyclotomic sequences of order four with period 2p2[J]. Journal of Electronics &Information Technology, 2015, 37(10): 2490–2494.
|
杜小妮, 赵丽萍, 王莲花. Z4上周期为2p2的四元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2018, 40(12): 2992–2997. doi: 10.11999/JEIT180189DU Xiaoni, ZHAO Liping, and WANG Lianhua. Linear complexity of quaternary sequences over Z4 derived from generalized cyclotomic classes modulo 2p2[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2992–2997. doi: 10.11999/JEIT180189
|
EDEMSKIY V, LI Chunlei, ZENG Xiangyong, et al. The linear complexity of generalized cyclotomic binary sequences of period p n[J]. Designs, Codes and Cryptography, 2019, 87(5): 1183–1197. doi: 10.1007/s10623-018-0513-2
|
CHEN Zhixiong and DU Xiaoni. On the linear complexity of binary threshold sequences derived from Fermat quotients[J]. Designs, Codes and Cryptography, 2013, 67(3): 317–323. doi: 10.1007/s10623-012-9608-3
|
CHEN Zhixiong and WINTERHOF A. On the distribution of pseudorandom numbers and vectors derived from Euler-Fermat quotients[J]. International Journal of Number Theory, 2012, 8(3): 631–641. doi: 10.1142/S1793042112500352
|
DU Xiaoni, KLAPPER A, and CHEN Zhixiong. Linear complexity of pseudorandom sequences generated by Fermat quotients and their generalizations[J]. Information Processing Letters, 2012, 112(6): 233–237. doi: 10.1016/j.ipl.2011.11.017
|
DU Xiaoni, CHEN Zhixiong, and HU Lei. Linear complexity of binary sequences derived from Euler quotients with prime-power modulus[J]. Information Processing Letters, 2012, 112(14/15): 604–609. doi: 10.1016/j.ipl.2012.04.011
|
WU Chenhuang, CHEN Zhixiong, and DU Xiaoni. Binary threshold sequences derived from Carmichael quotients with even numbers modulus[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2012, E95.A(7): 1197–1199. doi: 10.1587/transfun.E95.A.1197
|
ZHANG Jingwei and ZHAO Changan. Linear complexity and trace presentation of sequences with period 2p2[C]. 2018 IEEE International Symposium on Information Theory, Vail, USA, 2018: 2206–2210. doi: 10.1109/ISIT.2018.8437917.
|
AGOH T, DILCHER K, and SKULA L. Fermat quotients for composite moduli[J]. Journal of Number Theory, 1997, 66(1): 29–50. doi: 10.1006/jnth.1997.2162
|