高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模2pm的欧拉商的二元序列的线性复杂度

杜小妮 李丽 张福军

杜小妮, 李丽, 张福军. 基于模2pm的欧拉商的二元序列的线性复杂度[J]. 电子与信息学报, 2019, 41(12): 3000-3005. doi: 10.11999/JEIT190071
引用本文: 杜小妮, 李丽, 张福军. 基于模2pm的欧拉商的二元序列的线性复杂度[J]. 电子与信息学报, 2019, 41(12): 3000-3005. doi: 10.11999/JEIT190071
Xiaoni DU, Li LI, Fujun ZHANG. Linear Complexity of Binary Sequences Derived from Euler Quotients Modulo 2pm[J]. Journal of Electronics & Information Technology, 2019, 41(12): 3000-3005. doi: 10.11999/JEIT190071
Citation: Xiaoni DU, Li LI, Fujun ZHANG. Linear Complexity of Binary Sequences Derived from Euler Quotients Modulo 2pm[J]. Journal of Electronics & Information Technology, 2019, 41(12): 3000-3005. doi: 10.11999/JEIT190071

基于模2pm的欧拉商的二元序列的线性复杂度

doi: 10.11999/JEIT190071
基金项目: 国家自然科学基金(61462077, 61562077, 61772022),上海市自然科学基金(16ZR1411200)
详细信息
    作者简介:

    杜小妮:女,1972年生,教授,博士生导师,研究方向为密码学与信息安全

    李丽:女,1991年生,硕士生,研究方向为密码学与信息安全

    张福军:男,1995年生,硕士生,研究方向为密码学与信息安全

    通讯作者:

    李丽 ymxlili36@126.com

  • 中图分类号: TN918.4

Linear Complexity of Binary Sequences Derived from Euler Quotients Modulo 2pm

Funds: The National Natural Science Foundation of China (61462077, 61562077, 61772022), The Shanghai Municipal Natural Science Foundation (16ZR1411200)
  • 摘要: 基于欧拉商模奇素数幂构造的伪随机序列均具有良好的密码学性质。该文根据剩余类环理论,利用模$2{p^m}$($p$为奇素数,整数$m \ge 1$)的欧拉商构造了一类周期为$2{p^{m + 1}}$的二元序列,并在${2^{p - 1}}\not \equiv 1 ({od}\,{p^2})$的条件下借助有限域${F_2}$上确定多项式根的方法,给出了序列的线性复杂度。结果表明,序列的线性复杂度取值为$2({p^{m + 1}} - p)$$2({p^{m + 1}} - 1)$不小于其周期的1/2,能够抵抗Berlekamp-Massey(B-M)算法的攻击,是密码学意义上性质良好的伪随机序列。
  • DING Cunsheng, XIAO Guozhen, and SHAN Weijuan. The Stability Theory of Stream Ciphers[M]. Berlin, Heidelberg: Springer-Verlag, 1991: 251–321.
    GOLOMB S W and GONG Guang. Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar[M]. Cambridge, UK: Cambridge University Press, 2005: 174–175.
    SU Wei, YANG Yang, ZHOU Zhengchun, et al. New quaternary sequences of even length with optimal auto-correlation[J]. Science China Information Sciences, 2018, 61(2): 022308. doi: 10.1007/s11432-016-9087-2
    DAI Zongduo, GONG Guang, and SONG H Y. A trace representation of binary Jacobi sequences[J]. Discrete Mathematics, 2009, 309(6): 1517–1527. doi: 10.1016/j.disc.2008.02.024
    CHEN Zhixiong. Linear complexity of Legendre-polynomial quotients[J]. IET Information Security, 2018, 12(5): 414–418. doi: 10.1049/iet-ifs.2017.0307
    李瑞芳, 柯品惠. 一类新的周期为2pq的二元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2014, 36(3): 650–654. doi: 10.3724/SP.J.1146.2013.00751

    LI Ruifang and KE Pinhui. The linear complexity of a new class of generalized cyclotomic sequences with period 2pq[J]. Journal of Electronics &Information Technology, 2014, 36(3): 650–654. doi: 10.3724/SP.J.1146.2013.00751
    杜小妮, 王国辉, 魏万银. 周期为2p2的四阶二元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2015, 37(10): 2490–2494.

    DU Xiaoni, WANG Guohui, and WEI Wanyin. Linear complexity of binary generalized cyclotomic sequences of order four with period 2p2[J]. Journal of Electronics &Information Technology, 2015, 37(10): 2490–2494.
    杜小妮, 赵丽萍, 王莲花. Z4上周期为2p2的四元广义分圆序列的线性复杂度[J]. 电子与信息学报, 2018, 40(12): 2992–2997. doi: 10.11999/JEIT180189

    DU Xiaoni, ZHAO Liping, and WANG Lianhua. Linear complexity of quaternary sequences over Z4 derived from generalized cyclotomic classes modulo 2p2[J]. Journal of Electronics &Information Technology, 2018, 40(12): 2992–2997. doi: 10.11999/JEIT180189
    EDEMSKIY V, LI Chunlei, ZENG Xiangyong, et al. The linear complexity of generalized cyclotomic binary sequences of period p n[J]. Designs, Codes and Cryptography, 2019, 87(5): 1183–1197. doi: 10.1007/s10623-018-0513-2
    CHEN Zhixiong and DU Xiaoni. On the linear complexity of binary threshold sequences derived from Fermat quotients[J]. Designs, Codes and Cryptography, 2013, 67(3): 317–323. doi: 10.1007/s10623-012-9608-3
    CHEN Zhixiong and WINTERHOF A. On the distribution of pseudorandom numbers and vectors derived from Euler-Fermat quotients[J]. International Journal of Number Theory, 2012, 8(3): 631–641. doi: 10.1142/S1793042112500352
    DU Xiaoni, KLAPPER A, and CHEN Zhixiong. Linear complexity of pseudorandom sequences generated by Fermat quotients and their generalizations[J]. Information Processing Letters, 2012, 112(6): 233–237. doi: 10.1016/j.ipl.2011.11.017
    DU Xiaoni, CHEN Zhixiong, and HU Lei. Linear complexity of binary sequences derived from Euler quotients with prime-power modulus[J]. Information Processing Letters, 2012, 112(14/15): 604–609. doi: 10.1016/j.ipl.2012.04.011
    WU Chenhuang, CHEN Zhixiong, and DU Xiaoni. Binary threshold sequences derived from Carmichael quotients with even numbers modulus[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2012, E95.A(7): 1197–1199. doi: 10.1587/transfun.E95.A.1197
    ZHANG Jingwei and ZHAO Changan. Linear complexity and trace presentation of sequences with period 2p2[C]. 2018 IEEE International Symposium on Information Theory, Vail, USA, 2018: 2206–2210. doi: 10.1109/ISIT.2018.8437917.
    AGOH T, DILCHER K, and SKULA L. Fermat quotients for composite moduli[J]. Journal of Number Theory, 1997, 66(1): 29–50. doi: 10.1006/jnth.1997.2162
  • 加载中
计量
  • 文章访问数:  2405
  • HTML全文浏览量:  984
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-24
  • 修回日期:  2019-06-20
  • 网络出版日期:  2019-07-09
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回