高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种构造GC常重量DNA码的方法

梁静 李红菊 赵凤 丁健

梁静, 李红菊, 赵凤, 丁健. 一种构造GC常重量DNA码的方法[J]. 电子与信息学报, 2019, 41(10): 2423-2427. doi: 10.11999/JEIT190070
引用本文: 梁静, 李红菊, 赵凤, 丁健. 一种构造GC常重量DNA码的方法[J]. 电子与信息学报, 2019, 41(10): 2423-2427. doi: 10.11999/JEIT190070
Jing LIANG, Hongju LI, Feng ZHAO, Jian DING. A Method for Constructing GC Constant Weight DNA Codes[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2423-2427. doi: 10.11999/JEIT190070
Citation: Jing LIANG, Hongju LI, Feng ZHAO, Jian DING. A Method for Constructing GC Constant Weight DNA Codes[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2423-2427. doi: 10.11999/JEIT190070

一种构造GC常重量DNA码的方法

doi: 10.11999/JEIT190070
基金项目: 安徽省高校自然科学研究项目(KJ2017A623,KJ2018A0584),安徽新华学院自然科学重点项目(2018zr001)
详细信息
    作者简介:

    梁静:女,1986年生,讲师,硕士,研究方向为代数编码与密码

    李红菊:女,1982年生,副教授,硕士,研究方向为统计学

    赵凤:女,1985年生,讲师,硕士,研究方向密码学

    丁健:男,1982年生,副教授,硕士,研究方向为代数编码与密码

    通讯作者:

    梁静 beaulj8607@163.com

  • 中图分类号: O157.4

A Method for Constructing GC Constant Weight DNA Codes

Funds: Anhui University Natural Science Research Project (KJ2017A623, KJ2018A0584), Anhui Xinhua University Natural Science Key Project (2018zr001)
  • 摘要: GC重量是DNA码的一个重要参数,如何构造满足GC常重量约束的DNA码是一个有趣的问题。该文通过在DNA码与四元码之间建立一个双射,将构造满足GC常重量约束的DNA码转化为构造GC常重量四元码。通过代数的方法,构造了3类满足GC常重量约束的DNA码。
  • ADLEMAN L M. Molecular computation of solutions to combinatorial problems[J]. Science, 1994, 266(5187): 1021–1024. doi: 10.1126/science.7973651
    FRUTOS A G, LIU Qinghua, THIEL A J, et al. Demonstration of a word design strategy for DNA computing on surfaces[J]. Nucleic Acids Research, 1997, 25(23): 4748–4757. doi: 10.1093/nar/25.23.4748
    MARATHE A, CONDON A E, and CORN R M. On combinatorial DNA word design[J]. Journal of Computational Biology, 2001, 8(3): 201–220. doi: 10.1089/10665270152530818
    RYKO V V, MACULA A J, TORNEY D C, et al. DNA sequences and quaternary cyclic codes[C]. 2001 IEEE International Symposium on Information. Washington, USA, 2001: 248–248.
    GABORIT P and KING O D. Linear constructions for DNA codes[J]. Theoretical Computer Science, 2005, 334(1/3): 99–113. doi: 10.1016/j.tcs.2004.11.004
    ABUALRUB T, GHRAYEB A, and ZENG Xiangnian. Construction of cyclic codes over GF(4) for DNA computing[J]. Journal of the Franklin Institute, 2006, 343(4/5): 448–457. doi: 10.1016/j.jfranklin.2006.02.009
    SIAP I, ABUALRUB T, and GHRAYEB A. Cyclic DNA codes over the ring ${F_2}\left[ u \right]/\left( {{u^2} - 1} \right)$ based on the deletion distance[J]. Journal of the Franklin Institute, 2009, 346(8): 731–740. doi: 10.1016/j.jfranklin.2009.07.002
    GUENDA K and GULLIVER T A. Construction of cyclic codes over ${{\mathbb{F}}_{2}}+u{{\mathbb{F}}_{2}}$ for DNA computing[J]. Applicable Algebra in Engineering, Communication and Computing, 2013, 24(6): 445–459. doi: 10.1007/s00200-013-0188-x
    LIANG Jing and WANG Liqi. On cyclic DNA codes over ${{\mathbb{F}}_{2}}+u{{\mathbb{F}}_{2}}$ [J]. Journal of Applied Mathematics and Computing, 2016, 51(1/2): 81–91. doi: 10.1007/s12190-015-0892-8
    ZHU Shixin and CHEN Xiaojing. Cyclic DNA codes over ${{\mathbb{F}}_{2}}+u{{\mathbb{F}}_{2}}+v{{\mathbb{F}}_{2}}+uv{{\mathbb{F}}_{2}}$ and their applications[J]. Journal of Applied Mathematics and Computing, 2017, 55(1/2): 479–493. doi: 10.1007/s12190-016-1046-3
    DINH H Q, SINGH A K, PATTANAYAK S, et al. Cyclic DNA codes over the ring ${{\mathbb{F}}_{2}}+u{{\mathbb{F}}_{2}}+v{{\mathbb{F}}_{2}}+ uv{{\mathbb{F}}_{2}}+$ ${{\rm{v}}^{\rm{2}}}{{\mathbb{F}}_{2}}+u{{v}^{2}}{{\mathbb{F}}_{2}}$ [J]. Designs, Codes and Cryptography, 2018, 86(7): 1451–1467. doi: 10.1007/s10623-017-0405-x
    SHI Minjia and LU Yaqi. Cyclic DNA codes over ${{\mathbb{F}}_{2}}[u,v]/<{{u}^{3}},{{v}^{2}}-v,vu-uv>$ [J]. Advances in Mathematics of Communications, 2019, 13(1): 157–164. doi: 10.3934/amc.2019009
    SINGH A K, KUMAR N, MISHRA P, et al. Construction of dual cyclic codes over ${{\mathbb{F}}_{2}}[u,v]/\left\langle {{u}^{2}},{{v}^{2}}-v,uv-vu \right\rangle $ for DNA Computation[J]. Defence Science Journal, 2018, 68(5): 467–472. doi: 10.14429/dsj.68.12344
    OZTAS E S, YILDIZ B, and SIAP I. A novel approach for constructing reversible codes and applications to DNA codes over the ring ${{{\mathbb{F}}_{2}}[u]}/{<{{u}^{2k}}-1>}\;$ [J]. Finite Fields and Their Applications, 2017, 46: 217–234. doi: 10.1016/j.ffa.2017.04.001
    LIDL R and NIEDERREITE H. Finite Fields[M]. New York: Addison-Wesley Publishing Company, 1983.
  • 加载中
计量
  • 文章访问数:  2124
  • HTML全文浏览量:  851
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-24
  • 修回日期:  2019-08-15
  • 网络出版日期:  2019-08-29
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回