高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新型的高阶时域有限差分方法

许杰 徐珂 黄志祥

许杰, 徐珂, 黄志祥. 一种新型的高阶时域有限差分方法[J]. 电子与信息学报, 2020, 42(2): 425-429. doi: 10.11999/JEIT190050
引用本文: 许杰, 徐珂, 黄志祥. 一种新型的高阶时域有限差分方法[J]. 电子与信息学报, 2020, 42(2): 425-429. doi: 10.11999/JEIT190050
Jie XU, Ke XU, Zhixiang HUANG. A New High Order Finite Difference Time Domain Method[J]. Journal of Electronics & Information Technology, 2020, 42(2): 425-429. doi: 10.11999/JEIT190050
Citation: Jie XU, Ke XU, Zhixiang HUANG. A New High Order Finite Difference Time Domain Method[J]. Journal of Electronics & Information Technology, 2020, 42(2): 425-429. doi: 10.11999/JEIT190050

一种新型的高阶时域有限差分方法

doi: 10.11999/JEIT190050
基金项目: 国家自然科学基金(61722101, 61801002, 61701001, 61701003),安徽大学物理科学与信息技术研究所开放式学科建设基金(2019AH001)
详细信息
    作者简介:

    许杰:男,1989年生,博士,研究方向为计算电磁学、高性能计算和时域数值算法

    徐珂:男,1991年生,博士,研究方向为计算电磁学、多物理仿真和时域数值算法

    黄志祥:男,1979年生,教授,博士生导师,研究方向为计算电磁学,电磁散射与逆散射

    通讯作者:

    黄志祥 zxhuang@ahu.edu.cn

  • 中图分类号: O441.4

A New High Order Finite Difference Time Domain Method

Funds: The Natural National Natural Science of China (61722101, 61801002,61701001, 61701003), The Open Fund for Discipline Construction, Institute of Physical Science and Information Technology, Anhui University (2019AH001)
  • 摘要:

    相比于传统高阶时域有限差分算法(FDTD)而言,该文提出了一种改进的高阶FDTD的优化方法,该算法基于安培环路定律,通过计算机技术寻找到一组最优的系数使得FDTD方法的全局色散误差达到最小,通过不同分辨率下的点源辐射模拟证明了该方法在较低分辨率的情况下仍然具有极低的相位误差,对于解决电大尺寸结构建模中的数值色散等问题提供了有效的解决方案。

  • 图  1  高阶FDTD方法示意图

    图  2  改进的高阶FDTD算法示意图

    图  3  不同FDTD方法下的色散曲线

    图  4  2维点源辐射模型

    图  5  不同方法下点源辐射时域图

    图  6  矩形波导示意图

    图  7  不同方法下的S21参数曲线

    表  1  部分分辨率的色散误差

    RK1K2${\varPhi _{\gamma_i} }$
    5 –0.14493668 0.102073777 5.3797×10–10
    10 –0.11619507 0.073446898 9.1959×10–14
    15 –0.11180257 0.069281772 8.4433×10–16
    20 –0.11032252 0.067892310 2.2994×10–17
    25 –0.10964732 0.067260967 4.3034×10–18
    30 –0.10928263 0.066920442 1.5703×10–19
    35 –0.10906389 0.066716504 4.4814×10–20
    下载: 导出CSV

    表  2  4种情况下的运行时间和占用内存对比

    FDTD
    方法
    运行
    时间(s)
    占用
    内存(MB)
    空间
    步长(m)
    时间
    步长(s)
    粗网格S220.03560.10.1000.16×10–9
    S240.03230.20.1000.16×10–9
    M240.03290.70.1000.16×10–9
    细网格S2277.30703.00.0040.66×10–10
    下载: 导出CSV
  • YEE K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302–307. doi: 10.1109/TAP.1966.1138693
    葛德彪, 闫玉波. 电磁波时域有限差分法[M]. 2版. 西安: 西安电子科技大学出版社, 2005: 58–108.

    GE Debiao and YAN Yubo. Finite Difference Time Domain Method for Electromagnetic Waves[M]. 2nd ed. Xi’an: Xidian University Press, 2005: 58–108.
    KIM I S and HOEFER W J R. Numerical dispersion characteristics and stability factor for the TD-FD method[J]. Electronics Letters, 1990, 26(7): 485–487. doi: 10.1049/el:19900315
    CANGELLARIS A C and LEE R. On the accuracy of numerical wave simulations based on finite methods[J]. Journal of Electromagnetic Waves and Applications, 1992, 6(12): 1635–1653. doi: 10.1163/156939392X00779
    SHLAGER K L, MALONEY J G, RAY S L, et al. Relative accuracy of several finite-difference time-domain methods in two and three dimensions[J]. IEEE Transactions on Antennas and Propagation, 1993, 41(12): 1732–1737. doi: 10.1109/8.273296
    何四华, 吴春光, 丛滨. 基于高频方法的电大尺寸目标RCS仿真与分析[J]. 现代雷达, 2017, 39(6): 77–80. doi: 10.16592/j.cnki.1004-7859.2017.06.018

    HE Sihua, WU Chunguang, and CONG Bin. RCS simulation and analysis of electrically large objects based on high frequency method[J]. Modern Radar, 2017, 39(6): 77–80. doi: 10.16592/j.cnki.1004-7859.2017.06.018
    杨杨, 朱劼, 邹宁, 等. 电大凸目标电磁散射的数值路径变换算法研究[J]. 电波科学学报, 2017, 32(2): 199–206. doi: 10.13443/j.cjors.2017012201

    YANG Yang, ZHU Jie, ZOU Ning, et al. Numerical contour deformation method for calculating the scattered field from the electrically large convex scatterers[J]. Chinese Journal of Radio Science, 2017, 32(2): 199–206. doi: 10.13443/j.cjors.2017012201
    GAO Min, YANG Feng, YAN Fei, et al. Improved quasi-analytic method for transient analysis of electrically large conducting targets illuminated by a complex source beam[J]. IET Microwaves, Antennas & Propagation, 2017, 11(8): 1139–1146. doi: 10.1049/iet-map.2016.0796
    HADI M F, BOLLIMUNTHA R C, ELSHERBENI A Z, et al. A spherical FDTD numerical dispersion relation based on elemental spherical wave functions[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(5): 784–788. doi: 10.1109/LAWP.2018.2816459
    PEREDA J A and GRANDE A. Numerical dispersion relation for the 2-D LOD-FDTD method in lossy media[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2122–2125. doi: 10.1109/LAWP.2017.2699692
    KANG Zhen, MA Xikui, and SHAO Jinghui. A low-dispersion realization of a rectangular grid with PITD method through artificial anisotropy[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(4): 320–322. doi: 10.1109/LMWC.2017.2678399
    ZHOU Longjian, YANG Feng, LONG Rui, et al. A hybrid method of higher-order FDTD and subgridding technique[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1261–1264. doi: 10.1109/LAWP.2015.2504448
    苏卓, 谭峻东, 张俊, 等. 基于高阶时域有限差分算法的电磁波传播计算[J]. 电波科学学报, 2014, 29(3): 431–436. doi: 10.13443/j.cjors.2013060801

    SU Zhuo, TAN Jundong, ZHANG Jun, et al. An electromagnetic wave propagator based on higher-order FDTD method[J]. Chinese Journal of Radio Science, 2014, 29(3): 431–436. doi: 10.13443/j.cjors.2013060801
    SAXENA A K and SRIVASTAVA K V. Higher order LOD-FDTD methods and their numerical dispersion properties[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(3): 1480–1485. doi: 10.1109/TAP.2017.2653758
    REN Xingang, HUANG Zhixiang, WU Xianliang, et al. High-order unified symplectic FDTD scheme for the metamaterials[J]. Computer Physics Communications, 2012, 183(6): 1192–1200. doi: 10.1016/j.cpc.2012.01.021
    WEI Xiaokun, SHAO Wei, SHI Shengbing, et al. An optimized higher order PML in domain decomposition WLP-FDTD method for time reversal analysis[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4374–4383. doi: 10.1109/TAP.2016.2596899
    TAFLOVE A. Computational Electrodynamics: The Finite-Difference Time-Domain Method[M]. Boston: Artech House, 1995: 109–174.
    HADI M F. A modified FDTD (2, 4) scheme for modeling electricallylarge stuctures with high phase accuracy[D]. [Ph.D. dissertation], University of Colorado, 1996.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  2734
  • HTML全文浏览量:  1073
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-17
  • 修回日期:  2019-08-28
  • 网络出版日期:  2019-09-02
  • 刊出日期:  2020-02-19

目录

    /

    返回文章
    返回