Energy Efficient Based Resource Optimization Algorithm for Two-tier Non-Orthogonal Multiple Access Network
-
摘要:
该文针对双层非正交多址系统(NOMA)中基于能量效率的资源优化问题,该文提出基于双边匹配的子信道匹配方法和基于斯坦科尔伯格(Stackelberg)博弈的功率分配算法。首先将资源优化问题分解成子信道匹配与功率分配两个子问题,在功率分配问题中,将宏基站与小型基站层视作斯坦科尔伯格博弈中的领导者与追随者。然后将非凸优化问题转换成易于求解的方式,分别得到宏基站和小型基站层的功率分配。最后通过斯坦科尔伯格博弈,得到系统的全局功率分配方案。仿真结果表明,该资源优化算法能有效地提升双层NOMA系统的能量效率。
Abstract:A subchannel matching method based on bilateral matching and a power allocation algorithm based on Stackelberg game are proposed for two-tier Non-Orthogonal Multiple Access (NOMA) network. Firstly, the resource optimization problem is decomposed into two subproblems—sub-channel matching and power allocation. In the power allocation, the macro base station layer and small base station layer are regarded as the leader and followers in the Stackelberg game. Then, the non-convex optimization problem is converted into a way to be easily solved, and the power allocation of the both layers are obtained respectively. Finally, the global power allocation scheme of the system is obtained by using Stackelberg game. The simulation results show that the proposed resource optimization algorithms can effectively improve the energy efficiency of the two-tier NOMA system.
-
Key words:
- Non-Orthogonal Multiple Access (NOMA) /
- Game /
- Energy efficiency /
- Resource allocation
-
表 1 不同路径衰减公式
路径 公式 宏基站到宏用户 Pl(r)=15.3+37.6lgr 宏基站到小型基站用户 Pl(r)=15.3+37.6lgr+Lw 小型基站到其用户 Pl(r)=38.46+20lgr+0.7r 小型基站到其他
小型基站用户Pl(r)=max((15.3+37.6lg(r−Rs))(38.46+20lg(r−Rs)))+0.7Rs+2Lw 小型基站到宏用户 Pl(r)=max((15.3+37.6lg(r−Rs))(38.46+20lg(r−Rs)))+0.7Rs+Lw 表 2 仿真参数
参数 值 宏基站半径Rm 500 m 小型基站半径Rs 10 m 墙渗透衰减Lw 10 dB 系统带宽B 30 MH 载波频率 2 GHz 对数正态阴影衰落方差 8 dB -
ZHANG Haijun, FANG Fang, CHENG Julian, et al. Energy-efficient resource allocation in NOMA heterogeneous networks[J]. IEEE Wireless Communications, 2018, 25(2): 48–53. doi: 10.1109/MWC.2018.1700074 XIAO Zhenyu, ZHU Lipeng, CHOI J, et al. Joint power allocation and beamforming for Non-Orthogonal Multiple Access (NOMA) in 5G millimeter wave communications[J]. IEEE Transactions on Wireless Communications, 2018, 17(5): 2961–2974. doi: 10.1109/TWC.2018.2804953 WU Zhanji, LU Kun, JIANG Chengxin, et al. Comprehensive study and comparison on 5G NOMA schemes[J]. IEEE Access, 2018, 6: 18511–18519. doi: 10.1109/ACCESS.2018.2817221 ZENG Ming, HAO Wanming, DOBRE O A, et al. Energy-efficient power allocation in uplink mmWave massive MIMO with NOMA[J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 3000–3004. doi: 10.1109/TVT.2019.2891062 ZHU Kun, HOSSAIN E, and ANPALAGAN A. Downlink power control in two-tier cellular OFDMA networks under uncertainties: A robust Stackelberg game[J]. IEEE Transactions on Communications, 2015, 63(2): 520–535. doi: 10.1109/tcomm.2014.2382095 CHEN Zhiyong, DING Zhiguo, DAI Xuchu, et al. An optimization perspective of the superiority of NOMA compared to conventional OMA[J]. IEEE Transactions on Signal Processing, 2017, 65(19): 5191–5202. doi: 10.1109/TSP.2017.2725223 吴广富, 邓天垠, 苏开荣, 等. 基于非正交多址接入系统的多用户分组优化算法[J]. 电子与信息学报, 2018, 40(9): 2080–2087. doi: 10.11999/JEIT171220WU Guangfu, DENG Tianyin, SU Kairong, et al. Multi-user grouping optimization algorithm based on non-orthogonal multiple access systems[J]. Journal of Electronics &Information Technology, 2018, 40(9): 2080–2087. doi: 10.11999/JEIT171220 ISLAM S M R, AVAZOV N, DOBRE O A, et al. Power-domain Non-Orthogonal Multiple Access (NOMA) in 5G systems: Potentials and challenges[J]. IEEE Communications Surveys & Tutorials, 2017, 19(2): 721–742. doi: 10.1109/comst.2016.2621116 XIANG Lanhua and CHEN Hongbin. Energy-efficient and fair power allocation approach for NOMA in ultra-dense heterogeneous networks[C]. International Conference on Cyber-enabled Distributed Computing and Knowledge Discovery, Nanjing, China, 2017: 89–94. doi: 10.1109/CyberC.2017.54. LI Xunan, LI Chong, and JIN Ye. Dynamic resource allocation for transmit power minimization in OFDM-based NOMA systems[J]. IEEE Communications Letters, 2016, 20(12): 2558–2561. doi: 10.1109/LCOMM.2016.2612688 HOJEIJ M R, FARAH J, NOUR C A, et al. Resource allocation in downlink Non-Orthogonal Multiple Access (NOMA) for future radio access[C]. The 81st IEEE Vehicular Technology Conference, Glasgow, UK, 2015: 1–6. doi: 10.1109/VTCSpring.2015.7146056. FANG Fang, ZHANG Haijun, CHENG Julian, et al. Joint user scheduling and power allocation optimization for energy-efficient NOMA systems with imperfect CSI[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(12): 2874–2885. doi: 10.1109/JSAC.2017.2777672 SAITO Y, KISHIYAMA Y, BENJEBBOUR A, et al. Non-Orthogonal Multiple Access (NOMA) for cellular future radio access[C]. The 7th IEEE Vehicular Technology Conference, Dresden, Germany, 2013: 1–5. doi: 10.1109/VTCSpring.2013.6692652. PAPANDRIOPOULOS J and EVANS J S. SCALE: A low-complexity distributed protocol for spectrum balancing in multiuser DSL networks[J]. IEEE Transactions on Information Theory, 2009, 55(8): 3711–3724. doi: 10.1109/tit.2009.2023751 期刊类型引用(20)
1. 周晨,周乾伟,陈翰墨,管秋,胡海根,吴延壮. 面向RGBD图像显著性检测的循环逐尺度融合网络. 小型微型计算机系统. 2023(10): 2276-2283 . 百度学术
2. 叶海峰,赵玉琛. 视觉位置识别中代表地点的标识牌算法. 小型微型计算机系统. 2021(04): 823-828 . 百度学术
3. 王慧玲,宋鑫怡,杨颖. 基于优化查询的改进显著性检测算法. 吉林大学学报(信息科学版). 2020(03): 319-324 . 百度学术
4. 郭迎春,李卓. 基于边缘特征和自适应融合的视频显著性检测. 河北工业大学学报. 2019(01): 1-7 . 百度学术
5. 鲁文超,段先华,徐丹,王万耀. 基于多尺度下凸包改进的贝叶斯模型显著性检测算法. 计算机科学. 2019(06): 295-300 . 百度学术
6. 王宝艳,张铁,李凯,杜松林. DEL分割算法对SSLS算法的改进. 小型微型计算机系统. 2019(10): 2052-2057 . 百度学术
7. 张巧荣,徐国愚,张俊峰. 利用视觉显著性的前景目标分割. 兰州大学学报(自然科学版). 2019(06): 833-840 . 百度学术
8. 杨俊丰,林亚平,欧博,蒋军强,李强. 基于显著性加权随机优化的快速响应码美化方法. 电子与信息学报. 2018(02): 289-297 . 本站查看
9. 邓晨,谢林柏. 全局对比和背景先验驱动的显著目标检测. 计算机工程与应用. 2018(03): 212-216 . 百度学术
10. 刘亚宁,吴清,魏雪. 基于流行排序的前景背景显著性检测算法. 科学技术与工程. 2018(18): 74-81 . 百度学术
11. 闫钧华,肖勇旗,姜惠华,杨勇,张寅. 融合区域像素显著性和时域信息的地面动目标检测及其DSP实现. 电子设计工程. 2018(19): 178-183+193 . 百度学术
12. 陈厚仁,蔡延光. 基于视频的干线交通流检测系统的研究与实现. 工业控制计算机. 2017(07): 85-87 . 百度学术
13. 赵艳艳,沈西挺. 基于同步更新的背景检测显著性优化. 计算机工程. 2017(10): 264-267 . 百度学术
14. 田畅,姜青竹,吴泽民,刘涛,胡磊. 基于区域协方差的视频显著度局部空时优化模型. 电子与信息学报. 2016(07): 1586-1593 . 本站查看
15. 罗会兰,万成涛,孔繁胜. 基于KL散度及多尺度融合的显著性区域检测算法. 电子与信息学报. 2016(07): 1594-1601 . 本站查看
16. 张晴,林家骏,戴蒙. 基于图的流行排序的显著目标检测改进算法. 计算机工程与应用. 2016(22): 26-32+38 . 百度学术
17. 杜永强. 过度曝光图像缺失信息修复算法. 科技通报. 2016(08): 146-149 . 百度学术
18. 郎波,樊一娜,黄静. 利用混合高斯进行物体成分拟合匹配的算法. 科学技术与工程. 2016(20): 73-80 . 百度学术
19. 项导,侯赛辉,王子磊. 基于背景学习的显著物体检测. 中国图象图形学报. 2016(12): 1634-1643 . 百度学术
20. 吕建勇,唐振民. 一种基于图的流形排序的显著性目标检测改进方法. 电子与信息学报. 2015(11): 2555-2563 . 本站查看
其他类型引用(21)
-