高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于级联卷积神经网络的图像篡改检测算法

毕秀丽 魏杨 肖斌 李伟生 马建峰

毕秀丽, 魏杨, 肖斌, 李伟生, 马建峰. 基于级联卷积神经网络的图像篡改检测算法[J]. 电子与信息学报, 2019, 41(12): 2987-2994. doi: 10.11999/JEIT190043
引用本文: 毕秀丽, 魏杨, 肖斌, 李伟生, 马建峰. 基于级联卷积神经网络的图像篡改检测算法[J]. 电子与信息学报, 2019, 41(12): 2987-2994. doi: 10.11999/JEIT190043
Xiuli BI, Yang WEI, Bin XIAO, Weisheng LI, Jianfeng MA. Image Forgery Detection Algorithm Based on Cascaded Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2987-2994. doi: 10.11999/JEIT190043
Citation: Xiuli BI, Yang WEI, Bin XIAO, Weisheng LI, Jianfeng MA. Image Forgery Detection Algorithm Based on Cascaded Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2987-2994. doi: 10.11999/JEIT190043

基于级联卷积神经网络的图像篡改检测算法

doi: 10.11999/JEIT190043
基金项目: 国家自然科学基金(61572092, U1401252),国家重点研发计划基金(2016YFC1000307-3)
详细信息
    作者简介:

    毕秀丽:女,1982年生,副教授,研究方向包括图像处理、多媒体安全和图像取证

    魏杨:男,1993年生,硕士生,研究方向包括深度学习、图像取证

    肖斌:男,1982年生,教授,研究方向包括图像处理、模式识别和数字水印

    李伟生:男,1975年生,教授,研究方向包括智能信息处理与模式识别

    马建峰:男,1963年生,教授,研究方向包括计算机网络、信息安全

    通讯作者:

    肖斌 xiaobin@cqupt.edu.cn

  • 1) CASIA v2.0:<http://forensics.idealtest.org/casiav2/>
  • 中图分类号: TP309.2

Image Forgery Detection Algorithm Based on Cascaded Convolutional Neural Network

Funds: The National Natural Science Foundation of China (61572092, U1401252), The National Science & Technology Major Project (2016YFC1000307-3)
  • 摘要: 基于卷积神经网络的图像篡改检测算法利用卷积神经网络的学习能力可以实现不依赖于单一图像属性的图像篡改检测,弥补传统图像篡改检测方法依赖单一图像属性、适用度不高的缺陷。利用深层多神经元的单一网络结构的图像篡改检测算法虽然可以学习更高级的语义信息,但检测定位篡改区域效果并不理想。该文提出一种基于级联卷积神经网络的图像篡改检测算法,在卷积神经网络所展示出来的普遍特性的基础上进一步探究其深层次的特性,利用浅层稀神经元的级联网络结构弥补以往深层多神经元的单一网络结构在图像篡改检测中的缺陷。该文提出的检测算法由级联卷积神经网络和自适应筛选后处理两部分组成,级联卷积神经网络实现分级式的篡改区域定位,自适应筛选后处理对级联卷积神经网络的检测结果进行优化。通过实验对比,该文算法展示了较好的检测效果,且具有较高的鲁棒性。
  • 图  1  基于级联卷积神经网络算法的检测流程

    图  2  基于级联卷积神经网络算法的检测示例

    图  3  粗筛网络结构

    图  4  粒提网络结构

    图  5  4组对比实验示例

    图  6  各算法在不同攻击下的检测效果

    表  1  各算法的检测结果

    算法精确率召回率F
    NOI0.150.130.14
    GHO0.190.270.22
    DCT0.420.810.55
    NADQ0.120.700.20
    C2R-Net0.610.430.51
    LSC-Net0.140.620.23
    本文算法0.620.730.67
    下载: 导出CSV
  • MAHDIAN B and SAIC S. Using noise inconsistencies for blind image forensics[J]. Image and Vision Computing, 2009, 27(10): 1497–1503. doi: 10.1016/j.imavis.2009.02.001
    FARID H. Exposing digital forgeries from JPEG ghosts[J]. IEEE Transactions on Information Forensics and Security, 2009, 4(1): 154–160. doi: 10.1109/TIFS.2008.2012215
    YE Shuiming, SUN Qibin, and CHANG E C. Detecting digital image forgeries by measuring inconsistencies of blocking artifact[C]. 2007 IEEE International Conference on Multimedia and Expo, Beijing, China, 2007: 12–15. doi: 10.1109/ICME.2007.4284574.
    BIANCHI T and PIVA A. Image forgery localization via block-grained analysis of JPEG artifacts[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(3): 1003–1017. doi: 10.1109/TIFS.2012.2187516
    RAO Y and NI Jiangqun. A deep learning approach to detection of splicing and copy-move forgeries in images[C]. 2016 IEEE International Workshop on Information Forensics and Security, Abu Dhabi, UAE, 2016: 1–6. doi: 10.1109/WIFS.2016.7823911.
    ZHANG Ying, GOH J, WIN L L, et al. Image region forgery detection: A Deep Learning Approach[M]. MATHUR A and ROYCHOUDHURY R. Proceedings of the Singapore Cyber-Security Conference. Amsterdam: IOS Press, 2016: 1–11. doi: 10.3233/978-1-61499-617-0-1.
    BAPPY J H, ROY-CHOWDHURY A K, BUNK J, et al. Exploiting spatial structure for localizing manipulated image regions[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 4980–4989. doi: 10.1109/ICCV.2017.532.
    WEI Yang, BI Xiuli, and XIAO Bin. C2R Net: The coarse to refined network for image forgery detection[C]. The 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE International Conference on Big Data Science and Engineering, New York, USA, 2018: 1656–1659. doi: 10.1109/TrustCom/BigDataSE.2018.00245.
    HUH M, LIU A, OWENS A, et al. Fighting fake news: Image splice detection via learned self-consistency[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 106–124. doi: 10.1007/978-3-030-01252-6_7.
    SIMONYAN K and ZISSERMAN A. Very deep convolu-tional networks for large-scale image recognition[EB/OL]. https://arxiv.org/abs/1409.1556, 2014.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    IOFFE S and SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[EB/OL]. https://arxiv.org/abs/1502.03167, 2015.
    NAIR V and HINTON G E. Rectified linear units improve restricted boltzmann machines[C]. The 27th International Conference on Machine Learning, Haifa, Israel, 2010: 807-814.
    BEEFERMAN D and BERGER A. Agglomerative clustering of a search engine query log[C]. The 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, USA, 2000: 407-416. doi: 10.1145/347090.347176.
    BARBER C B, DOBKIN D P, and HUHDANPAA H. The quickhull algorithm for convex hulls[J]. ACM Transactions on Mathematical Software, 1996, 22(4): 469–483. doi: 10.1145/235815.235821
    CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679–698. doi: 10.1109/TPAMI.1986.4767851
    SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929–1958.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  5390
  • HTML全文浏览量:  2347
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-15
  • 修回日期:  2019-04-19
  • 网络出版日期:  2019-05-21
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回