高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于快速滤波算法的卷积神经网络加速器设计

王巍 周凯利 王伊昌 王广 袁军

王巍, 周凯利, 王伊昌, 王广, 袁军. 基于快速滤波算法的卷积神经网络加速器设计[J]. 电子与信息学报, 2019, 41(11): 2578-2584. doi: 10.11999/JEIT190037
引用本文: 王巍, 周凯利, 王伊昌, 王广, 袁军. 基于快速滤波算法的卷积神经网络加速器设计[J]. 电子与信息学报, 2019, 41(11): 2578-2584. doi: 10.11999/JEIT190037
Wei WANG, Kaili ZHOU, Yichang WANG, Guang WANG, Jun YUAN. Design of Convolutional Neural Networks Accelerator Based on Fast Filter Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2578-2584. doi: 10.11999/JEIT190037
Citation: Wei WANG, Kaili ZHOU, Yichang WANG, Guang WANG, Jun YUAN. Design of Convolutional Neural Networks Accelerator Based on Fast Filter Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2578-2584. doi: 10.11999/JEIT190037

基于快速滤波算法的卷积神经网络加速器设计

doi: 10.11999/JEIT190037
基金项目: 国家自然科学基金(61404019),重庆市集成电路产业重大主题专项(cstc2018jszx-cyztzx0211, cstc2018jszx-cyztzx0217)
详细信息
    作者简介:

    王巍:男,1967年生,博士后,教授,研究方向为集成电路设计

    周凯利:女,1991年生,硕士生,研究方向为数字集成电路设计

    王伊昌:男,1996年生,硕士生,研究方向为模拟集成电路设计

    王广:男,1994年生,硕士生,研究方向为半导体光电器件设计

    袁军:男,1984年生,博士,副教授,研究方向为数模混合集成电路设计

    通讯作者:

    周凯利 2508005354@qq.com

  • 中图分类号: TN432

Design of Convolutional Neural Networks Accelerator Based on Fast Filter Algorithm

Funds: The National Natural Science Foundation of China (61404019), Major Themes of Integrated Circuit Industry in Chongqing (cstc2018jszx-cyztzx0211, cstc2018jszx-cyztzx0217)
  • 摘要: 为减少卷积神经网络(CNN)的计算量,该文将2维快速滤波算法引入到卷积神经网络,并提出一种在FPGA上实现CNN逐层加速的硬件架构。首先,采用循环变换方法设计行缓存循环控制单元,用于有效地管理不同卷积窗口以及不同层之间的输入特征图数据,并通过标志信号启动卷积计算加速单元来实现逐层加速;其次,设计了基于4并行快速滤波算法的卷积计算加速单元,该单元采用若干小滤波器组成的复杂度较低的并行滤波结构来实现。利用手写数字集MNIST对所设计的CNN加速器电路进行测试,结果表明:在xilinx kintex7平台上,输入时钟为100 MHz时,电路的计算性能达到了20.49 GOPS,识别率为98.68%。可见通过减少CNN的计算量,能够提高电路的计算性能。
  • 图  2  卷积层的卷积计算过程

    图  1  卷积神经网络的结构

    图  3  卷积神经网络的逐层加速硬件架构图

    图  4  行缓存循环控制单元

    图  5  卷积计算加速单元的结构图

    图  6  各部分的具体电路

    表  1  MATLAB实现与FPGA实现的比较

    类型时间(ms/frams)精度(bad/10000 frames)数据类型
    .m文件0.78541.19%双精度
    .v 文件0.019861.32%16 bit定点数
    下载: 导出CSV

    表  2  卷积神经网络FPGA实现的性能比较

    参数文献[4]文献[6]文献[7]本文方案
    FPGAVirttex-7xc7vx485tZynqzc702Virttex-7xc7vx485tKirtex-7xc7k325t
    频率(MHz)100166150100
    时间(ms)2.63680.15100.02540.0199
    BRAM2796030
    DSP2095638284
    FF54075276646634636973
    LUT14832388365112551748
    识别率(%)98.6299.0196.8098.68
    GOPS1.582.7015.8720.49
    下载: 导出CSV
  • ZHANG Chen, LI Peng, SUN Guangyu, et al. Optimizing FPGA-based accelerator design for deep convolutional neural networks[C]. 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, USA, 2015: 161–170.
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
    DONG Han, LI Tao, LENG Jiabing, et al. GCN: GPU-based cube CNN framework for hyperspectral image classification[C]. The 201746th International Conference on Parallel Processing, Bristol, UK, 2017: 41–49.
    GHAFFARI S and SHARIFIAN S. FPGA-based convolutional neural network accelerator design using high level synthesize[C]. The 20162nd International Conference of Signal Processing and Intelligent Systems, Tehran, Iran, 2016: 1–6.
    CHEN Y H, KRISHNA T, EMER J S, et al. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks[J]. IEEE Journal of Solid-State Circuits, 2017, 52(1): 127–138. doi: 10.1109/JSSC.2016.2616357
    FENG Gan, HU Zuyi, CHEN Song, et al. Energy-efficient and high-throughput FPGA-based accelerator for Convolutional Neural Networks[C]. The 201613th IEEE International Conference on Solid-State and Integrated Circuit Technology, Hangzhou, China, 2016: 624–626.
    ZHOU Yongmei and JIANG Jingfei. An FPGA-based accelerator implementation for deep convolutional neural networks[C]. The 20154th International Conference on Computer Science and Network Technology, Harbin, China, 2015: 829–832.
    HOSEINI F, SHAHBAHRAMI A, and BAYAT P. An efficient implementation of deep convolutional neural networks for MRI segmentation[J]. Journal of Digital Imaging, 2018, 31(5): 738–747. doi: 10.1007/s10278-018-0062-2
    HUANG Jiahao, WANG Tiejun, ZHU Xuhui, et al. A parallel optimization of the fast algorithm of convolution neural network on CPU[C]. The 201810th International Conference on Measuring Technology and Mechatronics Automation, Changsha, China, 2018: 5–9.
    LAVIN A and GRAY S. Fast algorithms for convolutional neural networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016, 4013–4021.
    VINCHURKAR P P, RATHKANTHIWAR S V, and KAKDE S M. HDL implementation of DFT architectures using winograd fast Fourier transform algorithm[C]. The 2015 5th International Conference on Communication Systems and Network Technologies, Gwalior, India, 2015: 397–401.
    WANG Xuan, WANG Chao, and ZHOU Xuehai. Work-in-progress: WinoNN: Optimising FPGA-based neural network accelerators using fast winograd algorithm[C]. 2018 International Conference on Hardware/Software Codesign and System Synthesis, Turin, Italy, 2018: 1–2.
    NAITO Y, MIYAZAKI T, and KURODA I. A fast full-search motion estimation method for programmable processors with a multiply-accumulator[C]. 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, Atlanta, USA, 1996: 3221–3224.
    JIANG Jingfei, HU Rongdong, and LUJÁN M. A flexible memory controller supporting deep belief networks with fixed-point arithmetic[C]. The 2013 IEEE 27th International Symposium on Parallel and Distributed Processing Workshops and PhD Forum, Cambridge, USA, 2013: 144–152.
    LI Sicheng, WEN Wei, WANG Yu, et al. An FPGA design framework for CNN sparsification and acceleration[C]. The 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines, Napa, USA, 2017: 28.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  3289
  • HTML全文浏览量:  1476
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-15
  • 修回日期:  2019-03-20
  • 网络出版日期:  2019-05-23
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回