高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多级跳线连接的深度残差网络超分辨率重建

赵小强 宋昭漾

赵小强, 宋昭漾. 多级跳线连接的深度残差网络超分辨率重建[J]. 电子与信息学报, 2019, 41(10): 2501-2508. doi: 10.11999/JEIT190036
引用本文: 赵小强, 宋昭漾. 多级跳线连接的深度残差网络超分辨率重建[J]. 电子与信息学报, 2019, 41(10): 2501-2508. doi: 10.11999/JEIT190036
Xiaoqiang ZHAO, Zhaoyang SONG. Super-Resolution Reconstruction of Deep Residual Network with Multi-Level Skip Connections[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2501-2508. doi: 10.11999/JEIT190036
Citation: Xiaoqiang ZHAO, Zhaoyang SONG. Super-Resolution Reconstruction of Deep Residual Network with Multi-Level Skip Connections[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2501-2508. doi: 10.11999/JEIT190036

多级跳线连接的深度残差网络超分辨率重建

doi: 10.11999/JEIT190036
基金项目: 国家科学自然基金(61763029, 61873116)
详细信息
    作者简介:

    赵小强:男,1969年生,博士生导师,教授,主要研究方向为故障诊断,图像处理,生产调度等

    宋昭漾:男,1995年生,硕士生,研究方向为图像处理

    通讯作者:

    赵小强 xqzhao@lut.cn

  • 中图分类号: TP391

Super-Resolution Reconstruction of Deep Residual Network with Multi-Level Skip Connections

Funds: The National Natural Science Foundation of China (61763029, 61873116)
  • 摘要: 由于快速的卷积神经网络超分辨率重建算法(FSRCNN)卷积层数少、相邻卷积层的特征信息之间缺乏关联性,因此难以提取到图像深层信息导致图像超分辨率重建效果不佳。针对此问题,该文提出多级跳线连接的深度残差网络超分辨率重建方法。首先,该方法设计了多级跳线连接的残差块,在多级跳线连接的残差块基础上构造了多级跳线连接的深度残差网络,解决相邻卷积层的特性信息缺乏关联性的问题;然后,使用随机梯度下降法(SGD)以可调节的学习率策略对多级跳线连接的深度残差网络进行训练,得到该网络超分辨率重建模型;最后,将低分辨率图像输入到多级跳线连接的深度残差网络超分辨率重建模型中,通过多级跳线连接的残差块得到预测的残差特征值,再将残差图像和低分辨率图像组合在一起转化为高分辨率图像。该文方法与bicubic, A+, SRCNN, FSRCNN和ESPCN算法在Set5和Set14测试集上进行了对比测试,在视觉效果和评价指标数值上该方法都优于其它对比算法。
  • 图  1  残差块结构图

    图  2  多级跳线连接的残差块结构图

    图  3  相邻两个多级跳线连接的残差块结构图

    图  4  多级跳线连接的深度残差网络结构图

    图  5  不同跳线系数测得的峰值信噪比(PSNR)曲线

    图  6  Set5 测试集中的baby_GT重建对比图

    表  1  在Set5测试集上的测得的PSNR(dB)/SSIM值

    放大因子Bicubic[27]A+[28]SRCNN[18]FSRCNN[19]ESPCN[21]本文方法
    233.66/0.929936.54/0.954436.66/0.954237.00/0.955837.06/0.955937.35/0.9573
    330.39/0.868232.58/0.908832.75/0.909033.16/0.910433.13/0.913533.45/0.9162
    428.42/0.810430.28/0.860330.48/0.862830.71/0.865730.90/0.867331.07/0.8751
    下载: 导出CSV

    表  2  在Set14测试集上的测得的PSNR(dB)/ SSIM值

    放大因子BicubicA+SRCNNFSRCNNESPCN本文方法
    230.24/0.868832.28/0.905632.42/0.906332.63/0.908832.75/0.909833.34/0.9143
    327.55/0.774229.13/0.818829.28/0.820929.43/0.824229.49/0.827130.09/0.8512
    426.00/0.702727.32/0.749127.49/0.750327.59/0.753527.73/0.763728.26/0.7893
    下载: 导出CSV
  • THORNTON M W, ATKINSON P M, and HOLLAND D A. Sub-pixel mapping of rural land cover objects from fine spatial resolution satellite sensor imagery using super-resolution pixel-swapping[J]. International Journal of Remote Sensing, 2006, 27(3): 473–491. doi: 10.1080/01431160500207088
    PELED S and YESHURUN Y. Superresolution in MRI: Application to human white matter fiber tract visualization by diffusion tensor imaging[J]. Magnetic Resonance in Medicine, 2001, 45(1): 29–35. doi: 10.1002/1522-2594(200101)45
    ZOU W W W and YUEN P C. Very low resolution face recognition problem[J]. IEEE Transactions on Image Processing, 2012, 21(1): 327–340. doi: 10.1109/TIP.2011.2162423
    LU Huimin, LI Yujie, CHEN Min, et al. Brain intelligence: Go beyond artificial intelligence[J]. Mobile Networks and Applications, 2018, 23(2): 368–375. doi: 10.1007/s11036-017-0932-8
    KOCH M. Artificial intelligence is becoming natural[J]. Cell, 2018, 173(3): 531–533. doi: 10.1016/j.cell.2018.04.007
    LEO M, MEDIONI G, TRIVEDI M, et al. Computer vision for assistive technologies[J]. Computer Vision and Image Understanding, 2017, 154: 1–15. doi: 10.1016/j.cviu.2016.09.001
    ZHU Hong, TANG Xinming, XIE Junfeng, et al. Spatio-temporal super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement[J]. Sensors, 2018, 18(2): 498. doi: 10.3390/s18020498
    SHI Jun, LIU Qingping, WANG Chaofeng, et al. Super-resolution reconstruction of MR image with a novel residual learning network algorithm[J]. Physics in Medicine & Biology, 2018, 63(8): 085011. doi: 10.1088/1361-6560/aab9e9
    SU Heng, ZHOU Jie, and ZHANG Zhihao. Survey of super-resolution image reconstruction methods[J]. Acta Automatica Sinica, 2013, 39(8): 1202–1213. doi: 10.3724/SP.J.1004.2013.01202
    GRIBBON K T and BAILEY D G. A novel approach to real-time bilinear interpolation[C]. The 2nd IEEE International Workshop on Electronic Design, Test and Applications, Perth, Australia, 2004: 126–131. doi: 10.1109/DELTA.2004.10055.
    FRITSCH F N and CARLSON R E. Monotone piecewise cubic interpolation[J]. SIAM Journal on Numerical Analysis, 1980, 17(2): 238–246. doi: 10.1137/0717021
    STARK H and OSKOUI P. High-resolution image recovery from image-plane arrays, using convex projections[J]. Journal of the Optical Society of America A, 1989, 6(11): 1715–1726. doi: 10.1364/JOSAA.6.001715
    PATANAVIJIT V and JITAPUNKUL S. An iterative super-resolution reconstruction of image sequences using fast affine block-based registration with BTV regularization[C]. Proceedings of 2006 IEEE Asia Pacific Conference on Circuits and Systems, Singapore, 2006: 1717–1720. doi: 10.1109/APCCAS.2006.342128.
    ZHOU Fei, YANG Wenming, and LIAO Qingmin. Interpolation-based image super-resolution using multisurface fitting[J]. IEEE Transactions on Image Processing, 2012, 21(7): 3312–3318. doi: 10.1109/TIP.2012.2189576
    LIN Zhouchen and SHUM H Y. Fundamental limits of reconstruction-based superresolution algorithms under local translation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(1): 83–97. doi: 10.1109/TPAMI.2004.1261081
    YOUNG T, HAZARIKA D, PORIA S, et al. Recent trends in deep learning based natural language processing[J]. IEEE Computational Intelligence Magazine, 2018, 13(3): 55–75. doi: 10.1109/MCI.2018.2840738
    KERMANY D S, GOLDBAUM M, CAI Wenjia, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122–1131.e9. doi: 10.1016/j.cell.2018.02.010
    DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295–307. doi: 10.1109/TPAMI.2015.2439281
    DONG Chao, LOY C C, and TANG Xiaoou. Accelerating the super-resolution convolutional neural network[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 391–407. doi: 10.1007/978-3-319-46475-6_25.
    KIM J, LEE J K, and LEE K M. Deeply-recursive convolutional network for image super-resolution[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1637–1645. doi: 10.1109/CVPR.2016.181.
    SHI Wenzhe, CABALLERO J, HUSZÁR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1874–1883. doi: 10.1109/CVPR.2016.207.
    LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4681–4690. doi: 10.1109/CVPR.2017.19.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    KIM J, LEE J K, and LEE K M. Accurate image super-resolution using very deep convolutional networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 1646–1654. doi: 10.1109/CVPR.2016.182.
    YUAN Fei, HUANG Lianfen, and YAO Yan. An improved PSNR algorithm for objective video quality evaluation[C]. 2007 Chinese Control Conference, Hunan, China, 2007: 376–380. doi: 10.1109/CHICC.2006.4347144.
    WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861
    GAO Shengkui and GRUEV V. Bilinear and bicubic interpolation methods for division of focal plane polarimeters[J]. Optics Express, 2011, 19(27): 26161–26173. doi: 10.1364/OE.19.026161
    TIMOFTE R, DE SMET V, and VAN GOOL L. A+: Adjusted anchored neighborhood regression for fast super-resolution[C]. The 12th Asian Conference on Computer Vision, Singapore, 2014: 111–126. doi: 10.1007/978-3-319-16817-3_8.
    ZEYDE R, ELAD M, and PROTTER M. On single image scale-up using sparse-representations[C]. The 7th International Conference on Curves and Surfaces, Avignon, France, 2010: 711–730. doi: 10.1007/978-3-642-27413-8_47.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  3050
  • HTML全文浏览量:  1215
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-15
  • 修回日期:  2019-06-30
  • 网络出版日期:  2019-07-19
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回