高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于回声状态网络的卫星信道在线盲均衡算法

杨凌 赵膑 陈亮 李媛 张国龙

杨凌, 赵膑, 陈亮, 李媛, 张国龙. 基于回声状态网络的卫星信道在线盲均衡算法[J]. 电子与信息学报, 2019, 41(10): 2334-2341. doi: 10.11999/JEIT190034
引用本文: 杨凌, 赵膑, 陈亮, 李媛, 张国龙. 基于回声状态网络的卫星信道在线盲均衡算法[J]. 电子与信息学报, 2019, 41(10): 2334-2341. doi: 10.11999/JEIT190034
Ling YANG, Bin ZHAO, Liang CHEN, Yuan LI, Guolong ZHANG. Online Blind Equalization Algorithm for Satellite Channel Based on Echo State Network[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2334-2341. doi: 10.11999/JEIT190034
Citation: Ling YANG, Bin ZHAO, Liang CHEN, Yuan LI, Guolong ZHANG. Online Blind Equalization Algorithm for Satellite Channel Based on Echo State Network[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2334-2341. doi: 10.11999/JEIT190034

基于回声状态网络的卫星信道在线盲均衡算法

doi: 10.11999/JEIT190034
基金项目: 中央高校基本科研业务费专项资金项目(lzujbky-2017-38),甘肃省自然科学基金(纵20180322)
详细信息
    作者简介:

    杨凌:女,1966年生,副教授,研究方向为盲信号处理和神经网络、支持向量机等

    赵膑:男,1994年生,硕士生,研究方向为神经网络盲信号处理

    陈亮:男,1992年生,硕士生,研究方向为支持向量回归盲信号处理

    李媛:女,1994年生,硕士生,研究方向为卫星信道盲均衡

    张国龙:男,1985年生,硕士生,研究方向为水声信道盲均衡

    通讯作者:

    杨凌 lingyang@lzu.edu.cn

  • 中图分类号: TN927.2; TN911.7

Online Blind Equalization Algorithm for Satellite Channel Based on Echo State Network

Funds: The Fundamental Research Fund for the Central Universities (lzujbky-2017-38), The Natural Science Foundation of Gansu Province (Longitudinal 20180322)
  • 摘要: 针对非线性卫星信道,该文提出了两种基于回声状态网络(ESN)的在线盲均衡算法。利用ESN良好的非线性逼近能力,将发送信号的高阶统计量(HOS)代入ESN,结合常模算法(CMA)和多模算法(MMA)构造盲均衡的代价函数,并采用递归最小二乘(RLS)算法对ESN输出权值进行迭代寻优,实现了Volterra卫星信道下常模和多模信号的在线盲均衡。实验表明,该文算法可以有效降低非线性信道对发送信号产生的畸变,相较于传统的Volterra滤波方法,有更快的收敛速度和更低的均方误差值。
  • 图  1  卫星信道的等效基带盲均衡系统框图

    图  2  回声状态网络结构

    图  3  不同激活函数$f( \cdot )$对两种算法性能的影响

    图  4  网络读出层函数${f_{{\rm{out}}}}( \cdot )$对两种算法性能的影响

    图  5  QPSK和16QAM信号下的两种算法的MSE性能比较

    图  6  两种算法对16QAM信号均衡前后的星座图

    图  7  两种在线盲均衡算法与Volterra滤波算法的性能对比

    表  1  ESN-RLS-CMA算法

     步骤 1  均衡器初始化:随机生成(${{\text{W}}_{{\rm{res}}}},{{\text{W}}_{{\rm{in}}}}$),初始化
         ${\text{u}}(0)$,${{\text{W}}_{{\rm{out}}}}$和$\lambda $; ${\text{P}}(0) = {\delta ^{ - 1}}{\text{I}}$($\delta $是一个很小的正数);
     步骤 2  For:n=1, 2,···, N
        (1) 更新储备池状态:${\text{u}}(n) = f({{\text{W}}_{{\rm{res}}}}{\text{u}}(n - 1) + {{\text{W}}_{{\rm{in}}}}x(n))$;
        (2) 计算$y\left( n \right) = {{\text{W}}_{{\rm{out}}}}\left( {n - 1} \right){\text{u}}\left( n \right)$;
        (3) 由式(7)得到${\tilde{\text U}}(n,n)$,通过式(11)计算自相关矩阵${\text{P}}(n)$;
        (4) 按照式(12)更新ESN的输出权值${{\text{W}}_{{\rm{out}}}}(n)$;
        (5) 根据文献[14]的方法调整$\lambda $值。
        End;
     步骤 3  迭代直到网络收敛为止。
    下载: 导出CSV

    表  2  ESN-RLS-MMA算法

     步骤 1  均衡器初始化:随机生成(${{\text{W}}_{{\rm{res}}}},{{\text{W}}_{{\rm{in}}}}$);初始化
         ${\text{u}}(0)$,${{\text{W}}_{{\rm{out}}}}$,$\lambda $($0 \ll \lambda < 1$),${{\hat{\text R}}^{ - 1}}(0){\rm{ = }}\delta {\text{I}}$($\delta $是一个很小的正
         数);设置$\gamma {\rm{ \!=\! }}3{\rm{E}} \{ s_{\rm{R}}^2(n)\} \!-\! {R_{{\rm{MMA}}}}$,门限值T=$3{\rm{E}}\{ {\left|\! {s(n)}\! \right|^2}\} $;
     步骤 2  For:n=1,2,···,N;
        (1) 更新储备池状态:${\text{u}}(n) = f({{\text{W}}_{{\rm{res}}}}{\text{u}}(n - 1) + {{\text{W}}_{{\rm{in}}}}x(n))$;
        (2) 计算$y(n) = {{\text{W}}_{{\rm{out}}}}(n - 1){\text{u}}(n)$;
        (3) 通过式(30)计算${{\hat{\text R}}^{ - 1}}(n)$;
        (4) 计算:${d_{\rm{R}}}(n) = \left[ {\gamma + {R_{{\rm{MMA}}}} - y_{\rm{R}}^2(n)} \right]{y_{\rm{R}}}(n)$,
          ${d_{\rm{I}}}(n) = \left[ {\gamma + {R_{{\rm{MMA}}}} - y_{\rm{I}}^2(n)} \right]{y_{\rm{I}}}(n)$
                   $d(n) = {\gamma ^{{\rm{ - }}1}}\left[ {{d_{\rm{R}}}(n) + j{d_{\rm{I}}}(n)} \right]$;
        (5) If ${\left| {y(n)} \right|^2}$>T;
                 $d(n) = 0$
             End;
        (6) 根据式(32)更新${{\text{W}}_{{\rm{out}}}}(n)$。
        End;
     步骤 3  迭代直到网络收敛为止。
    下载: 导出CSV

    表  3  取不同储备池规模N时两种算法的MSE值(dB)

    算法N=20N=50N=100N=200N=300
    ESN-RLS-CMA–22.56–28.12–29.06–28.41–28.72
    ESN-RLS-MMA–18.12–29.58–30.62–29.10–29.29
    下载: 导出CSV

    表  4  本文算法与5阶Volterra滤波算法的运算复杂度对比

    算法运算复杂度
    VolterraO(24M5+16M3+8M)
    ESN-RLS-CMAO(4N3+18N2+10N)
    ESN-RLS-MMAO(4N3+19N2+10N)
    下载: 导出CSV
  • MELONI A and MURRONI M. On the genetic optimization of APSK constellations for satellite broadcasting[C]. 2014 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, Beijing, China, 2014: 1–6. doi: 10.1109/BMSB.2014.6873465.
    MOUSSA A, POULIQUEN M, FRIKEL M, et al. Blind equalisation in the presence of bounded noise[J]. IET Signal Processing, 2018, 12(8): 957–965. doi: 10.1049/iet-spr.2017.0445
    孙海飞, 江桦. 非线性卫星信道下的粒子滤波盲均衡方法[J]. 信号处理, 2015, 31(5): 587–593. doi: 10.3969/j.issn.1003-0530.2015.05.011

    SUN Haifei and JIANG Hua. Particle filtering blind equalization method in nonlinear satellite channel[J]. Journal of Signal Processing, 2015, 31(5): 587–593. doi: 10.3969/j.issn.1003-0530.2015.05.011
    SÉNÉCAL S, AMBLARD P O, and CAVAZZANA L. Particle filtering equalization method for a satellite communication channel[J]. EURASIP Journal on Advances in Signal Processing, 2004, 2004: 591429. doi: 10.1155/S1110865704404090
    MALONE J and WICKERT M A. Practical volterra equalizers for wideband satellite communications with TWTA nonlinearities[C]. 2011 Digital Signal Processing and Signal Processing Education Meeting, Sedona, USA, 2011: 481–53. doi: 10.1109/DSP-SPE.2011.5739185.
    郭业才, 费赛男, 王惠. 基于多小波双变换的非线性卫星信道盲均衡算法[J]. 电子学报, 2016, 44(10): 2384–2390. doi: 10.3969/j.issn.0372-2112.2016.10.015

    GUO Yecai, FEI Sainan, and WANG Hui. Nonlinear satellite channel blind equalization algorithm based on multi-wavelet double transformation[J]. Acta Electronica Sinica, 2016, 44(10): 2384–2390. doi: 10.3969/j.issn.0372-2112.2016.10.015
    BENVENUTO N, MARCHESI M, PIAZZA F, et al. Non linear satellite radio links equalized using blind neural networks[C]. 1991 International Conference on Acoustics, Speech, and Signal Processing, Toronto, Canada, 1991: 1521–1524. doi: 10.1109/ICASSP.1991.150526.
    LI Yanqin, GUO Chunsheng, ZHANG Zhen, et al. A novel feed-forward neural network blind equalization algorithm[C]. 2010 International Conference on Intelligent Control and Information Processing, Dalian, China, 2010: 404–408. doi: 10.1109/ICICIP.2010.5564245.
    王贵银. 复数Hopfield神经网络盲均衡QAM信号[J]. 电子测试, 2011(5): 57–60. doi: 10.3969/j.issn.1000-8519.2011.05.014

    WANG Guiyin. Blind equalization of QAM with a complex Hopfield neural network[J]. Electronic Test, 2011(5): 57–60. doi: 10.3969/j.issn.1000-8519.2011.05.014
    RUAN Xiukai, LI Chang, YANG Weibo, et al. Blind sequence detection using reservoir computing[J]. Digital Signal Processing, 2017, 62: 81–90. doi: 10.1016/j.dsp.2016.10.012
    ZORN S, EHM H J, and WEIGEL R. A novel technique for determining kernels of volterra based behavioral models for RF amplifiers[C]. The 38th European Microwave Conference, Amsterdam, Netherlands, 2008: 246–249. doi: 10.1109/EUMC.2008.4751434.
    唐成凯, 张玲玲, 廉保旺. 卫星高阶调制信号通信下非线性误差修正均衡方法[J]. 通信学报, 2017, 38(1): 117–125. doi: 10.11959/j.issn.1000-436x.2017014

    TANG Chengkai, ZHANG Lingling, and LIAN Baowang. Nonlinear error modified equalization algorithm in high-order modulation of satellite communication[J]. Journal of Communications, 2017, 38(1): 117–125. doi: 10.11959/j.issn.1000-436x.2017014
    ZHOU Haowen, HUANG Jinquan, LU Feng, et al. Echo state kernel recursive least squares algorithm for machine condition prediction[J]. Mechanical Systems and Signal Processing, 2018, 111: 68–86. doi: 10.1016/j.ymssp.2018.03.047
    PARK D J, JUN B E, and KIM J H. Fast tracking RLS algorithm using novel variable forgetting factor with unity zone[J]. Electronics Letters, 1991, 27(23): 2150–2151. doi: 10.1049/el:19911331
    李进, 冯大政, 刘文娟. 快速QAM信号多模盲均衡算法[J]. 电子与信息学报, 2013, 35(2): 273–279. doi: 10.3724/SP.J.1146.2012.00609

    LI Jin, FENG Dazheng, and LIU Wenjuan. A fast multimodulus blind equalization algorithm for QAM signal[J]. Journal of Electronics &Information Technology, 2013, 35(2): 273–279. doi: 10.3724/SP.J.1146.2012.00609
    PAVAN F R M, SILVA M T M, and MIRANDA M D. A numerically robust blind equalization scheme applied to MIMO communication systems[J]. Journal of the Franklin Institute, 2018, 355(1): 596–624. doi: 10.1016/j.jfranklin.2017.10.036
    MBOUP M and REGALIA P A. A gradient search interpretation of the super-exponential algorithm[J]. IEEE Transactions on Information Theory, 2000, 46(7): 2731–2734. doi: 10.1109/18.887889
    MIRANDA M D, SILVA M T M, and NASCIMENTO V H. Avoiding divergence in the shalvi-weinstein algorithm[J]. IEEE Transactions on Signal Processing, 2008, 56(11): 5403–5413. doi: 10.1109/TSP.2008.928505
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  2572
  • HTML全文浏览量:  1327
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-15
  • 修回日期:  2019-05-30
  • 网络出版日期:  2019-06-12
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回