高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种快速稳健的致密焦面阵列馈源设计方法

何山红 纪萌茜 解良玉 范瑾 范冲

何山红, 纪萌茜, 解良玉, 范瑾, 范冲. 一种快速稳健的致密焦面阵列馈源设计方法[J]. 电子与信息学报, 2019, 41(11): 2623-2631. doi: 10.11999/JEIT190026
引用本文: 何山红, 纪萌茜, 解良玉, 范瑾, 范冲. 一种快速稳健的致密焦面阵列馈源设计方法[J]. 电子与信息学报, 2019, 41(11): 2623-2631. doi: 10.11999/JEIT190026
Shanhong HE, Mengqian JI, Liangyu XIE, Jin FAN, Chong FAN. A Fast and Robust Design Method for Dense Focal Plane Array Feed[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2623-2631. doi: 10.11999/JEIT190026
Citation: Shanhong HE, Mengqian JI, Liangyu XIE, Jin FAN, Chong FAN. A Fast and Robust Design Method for Dense Focal Plane Array Feed[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2623-2631. doi: 10.11999/JEIT190026

一种快速稳健的致密焦面阵列馈源设计方法

doi: 10.11999/JEIT190026
基金项目: 国家自然科学基金(U1631115, 11403054),国家自然科学基金-中国科学院天文联合基金(U1631115),国家自然科学基金与瑞典科研教育国际合作基金(11611130023)
详细信息
    作者简介:

    何山红:男,1973年生,教授,主要研究方向为大型反射面天线及馈源、阵列天线及宽带天线设计及研究

    纪萌茜:女,1996年生,硕士生,研究方向为天线中的优化设计

    解良玉:女,1996年生,硕士生,研究方向为宽带天线、多频天线和多波束天线设计

    范瑾:女,1985年生,工程师,博士,研究方向为大型射电天文望远镜天线及高性能馈源设计及研究

    范冲:男,1990年生,博士生,研究方向为周期性结构天线、透镜天线及反射面的设计及研究

    通讯作者:

    何山红 antennaeng@163.com

  • 中图分类号: TN823

A Fast and Robust Design Method for Dense Focal Plane Array Feed

Funds: The National Natural Science Foundation of China (U1631115, 11403054), The Joint Research Fund in Astronomy under Cooperative Agreement between the National Natural Science Foundation of China and Chinese Academy of Science(U1631115), The Swedish Foundation for International Cooperation with NSFC in Research and Higher Education (11611130023)
  • 摘要: 致密焦面阵列馈源(DFPAF)融合了多喇叭多波束馈源和相控阵列馈源(PAF)的特点,与多喇叭多波束馈源和常规相控阵列馈源相比较,它可以同时提供更多的固定赋形波束进一步拓宽视场。在射电天文、雷达、电子侦察和卫星通信等领域引起了极大的关注。由于其阵列结构与常规阵列馈源不同,导致设计方法也具有特殊性,因此近年来展开了对其设计方法的研究。该文充分利用反射面天线的固有特性,并结合阵列天线理论,提出一种可以快速、稳健地设计致密焦面阵列馈源的方法,给出了设计原理和设计结果,并和最具代表性的多喇叭多波束馈源进行了性能对比分析,为设计致密焦面阵列馈电的大型反射面提供理论和数据参考。
  • 图  1  抛物面天线坐标系

    图  2  馈源结构

    图  3  中心频率的焦面电场分布

    图  4  中心频率的初级辐射方向图($\varphi $ = 90°平面)

    图  5  抛物面天线在中心频率的远场辐射方向图($\varphi $=90°)

    图  6  50号波束中心频率的立体远场辐射方向图

    表  1  多波束反射面天线性能总结表

    波束馈源类型天线增益(dB)天线效率(%)第1旁瓣电平(dB)半功率波束宽度(°)波束指向(°)与中心波束的增益差(dB)
    1号1.05 GHz焦面场75.0874.00–17.100.05960.0000.00
    多喇叭多波束馈源74.4664.15–24.100.06120.0000.00
    致密焦面阵列馈源74.9872.32–17.600.06060.0000.00
    5号1.05 GHz焦面场75.0172.82–16.400.0600–0.045–0.07
    多喇叭多波束馈源74.3862.97–19.900.0616–0.045–0.08
    致密焦面阵列馈源74.9471.66–16.100.0616–0.045–0.04
    14号1.05 GHz焦面场74.9271.32–16.500.0599–0.090–0.16
    多喇叭多波束馈源74.2060.47–17.600.0619–0.090–0.26
    致密焦面阵列馈源74.7468.43–20.200.0622–0.090–0.24
    29号1.05 GHz焦面场74.8169.54–16.400.0598–0.140–0.27
    多喇叭多波束馈源74.0057.70–15.400.0622–0.140–0.46
    致密焦面阵列馈源74.6166.41–17.100.0619–0.140–0.37
    50号1.05 GHz焦面场74.5865.95–15.600.0617–0.180–0.50
    多喇叭多波束馈源73.7854.91–13.500.0626–0.185–0.68
    致密焦面阵列馈源74.4263.57–15.300.0626–0.180–0.56
    1号1.25 GHz焦面场76.6775.46–16.900.05000.0000.00
    多喇叭多波束馈源76.1867.29–26.800.05270.0000.00
    致密焦面阵列馈源76.6274.42–19.100.05140.0000.00
    5号1.25 GHz焦面场76.5773.66–17.100.0500–0.045–0.10
    多喇叭多波束馈源76.0565.34–21.500.0530–0.045–0.12
    致密焦面阵列馈源76.5573.36–18.400.0519–0.045–0.06
    14号1.25 GHz焦面场76.4671.80–16.200.0502–0.090–0.21
    多喇叭多波束馈源75.8462.31–17.200.0542–0.090–0.33
    致密焦面阵列馈源76.2568.37–18.600.0529–0.090–0.36
    29号1.25 GHz焦面场76.3369.67–16.100.0505–0.140–0.34
    多喇叭多波束馈源75.6058.97–15.000.0538–0.140–0.57
    致密焦面阵列馈源76.2067.66–19.200.0526–0.135–0.41
    50号1.25 GHz焦面场76.1366.50–15.700.0512–0.180–0.54
    多喇叭多波束馈源75.2954.86–13.000.0548–0.185–0.88
    致密焦面阵列馈源75.9764.17–15.800.0535–0.185–0.64
    1号1.45 GHz焦面场78.0677.07–16.700.04260.0000.00
    多喇叭多波束馈源77.5268.06–30.600.04680.0000.00
    致密焦面阵列馈源78.0176.19–19.900.04400.0000.00
    5号1.45 GHz焦面场77.9775.49–16.600.0426–0.045–0.09
    多喇叭多波束馈源77.3966.05–21.600.0470–0.045–0.13
    致密焦面阵列馈源77.9074.28–18.800.0437–0.045–0.11
    14号1.45 GHz焦面场77.8573.43–16.200.0427–0.095–0.21
    多喇叭多波束馈源77.1662.64–17.200.0480–0.095–0.35
    致密焦面阵列馈源77.6469.96–20.100.0456–0.095–0.37
    29号1.45 GHz焦面场77.6770.45–16.500.0488–0.140–0.39
    多喇叭多波束馈源76.8658.46–15.000.0486–0.140–0.65
    致密焦面阵列馈源77.4967.59–17.500.0445–0.140–0.52
    50号1.45 GHz焦面场77.4366.66–16.000.0439–0.185–0.63
    多喇叭多波束馈源76.4453.07–12.800.0499–0.185–1.07
    致密焦面阵列馈源77.2263.52–13.700.0465–0.180–0.79
    下载: 导出CSV
  • CHEN Yang, MENG Hongfu, GAN Yu, et al. Millimeter wave multi-beam reflector antenna[C]. 2018 International Workshop on Antenna Technology, Nanjing, China, 2018: 1–3. doi: 10.1109/IWAT.2018.8379140.
    MANOOCHEHRI O, EMADEDDIN A, DARVAZEHBAN A, et al. A new method for designing high efficiency multi feed multi beam reflector antennas[C]. 2017 International Conference on Electromagnetics in Advanced Applications, Verona, Italy, 2017: 551–554. doi: 10.1109/ICEAA.2017.8065304.
    ANGEVAIN J C, FONSECA N, SCHOBERT D, et al. Multibeam reflector antennas for space applications: Current trends and future perspectives in Europe[C]. The 12th European Conference on Antennas and Propagation, London, UK, 2018: 1–5. doi: 10.1049/cp.2018.0804.
    HE Shanhong, LI Wenkai, LU Xiaojia, et al. Predicting influence of the rest spherical surface on the instantaneous parabolic surface of multi-beam for radio astronomy[C]. 2018 IEEE MTT-S international wireless symposium, Chengdu, China, 2018: 1–3. doi: 10.1109/IEEE-IWS.2018.8400911.
    SMITH S L, DUNNING A, SMART K W, et al. Performance validation of the 19-element multibeam feed for the five-hundred-metre aperture spherical radio telescope[C]. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, USA, 2017: 2137–2138.
    DUNNING A, BOWEN M, CASTILLO S, et al. Design and laboratory testing of the five hundred meter aperture spherical telescope (FAST) 19 beam L-band receiver[C]. The 2017 32nd General Assembly and Scientific Symposium of the International Union of Radio Science, Montreal, Canada, 2017. doi: 10.23919/URSIGASS.2017.8105012.
    LIU Lei and GRAINGE K. Realization of phased arrays for reflector observing systems[C]. The 2017 32nd General Assembly and Scientific Symposium of the International Union of Radio Science, Montreal, Canada, 2017. doi: 10.23919/URSIGASS.2017.8105014.
    HUT B, VAN DEN BRINK R H, and VAN CAPPELLEN W A. Status update on the system validation of APERTIF, the phased array feed system for the westerbork synthesis radio telescope[C]. The 2017 11th European Conference on Antennas and Propagation, Paris, France, 2017: 1960–1961. doi: 10.23919/EuCAP.2017.7928787.
    WU Yang, WARNICK K F, and JIN Chengjin. Design study of an L-band phased array feed for wide-field surveys and vibration compensation on FAST[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(6): 3026–3033. doi: 10.1109/TAP.2013.2254438
    IVASHINA M V, KEHN M N M, KILDAL P S, et al. Control of reflection and mutual coupling losses in maximizing efficiency of dense focal plane arrays[C]. The 20061st European Conference on Antennas and Propagation, Nice, France, 2006: 1–6. doi: 10.1109/EUCAP.2006.4585045.
    IVASHINA M and VAN ARDENNE J D B A. A way to improve the field of view of the radiotelescope with a dense focal plane array[C]. The 12th International Conference Microwave and Telecommunication Technology, Sevastopol, Ukraine, 2002: 278–281. doi: 10.1109/CRMICO.2002.1137238.
    IVASHINA M and BREGMAN J. Experimental synthesis of a feed pattern with a dense focal plane array[C]. The 200232nd European Microwave Conference, Milan, Italy, 2002: 1–4. doi: 10.1109/EUMA.2002.339456.
    SHI Wei, ZHANG Quansheng, and DU Hui. Quantum particle swarm optimization for integer programming of phased array feeds[C]. 2010 International Conference on Microwave and Millimeter Wave Technology, Chengdu, China, 2010: 1386–1389. doi: 10.1109/ICMMT.2010.5524774.
    CHANG D C, HU C N, HUNG C I, et al. Pattern synthesis of the offset reflector antenna system with less complicated phased array feed[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(2): 240–245. doi: 10.1109/8.277218
    TANAKA S, YAMADA T, MURATA T, et al. A study on pattern synthesis method for array-fed reflector antenna for advanced direct broadcasting satellites[C]. 2001 IEEE Antennas and Propagation Society International Symposium, Boston, USA, 2001: 566–569. doi: 10.1109/APS.2001.958916.
    SAKA B and YAZGAN E. Pattern optimization of a reflector antenna with planar-array feeds and cluster feeds[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(1): 93–97. doi: 10.1109/8.554245
    WHITE W D. Circular aperture distribution functions[J]. IEEE Transactions on Antennas and Propagation, 1977, 25(5): 714–716. doi: 10.1109/TAP.1977.1141672
    SKULKIN S P, TURCHIN V I, KASCHEEV N I, et al. Transient field calculation of aperture antennas for various field distributions over the aperture[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2295–2298. doi: 10.1109/LAWP.2017.2715323
    DUAN D W and RAHMAT-SAMII Y. A generalized three-parameter (3-P) aperture distribution for antenna applications[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(6): 697–713. doi: 10.1109/8.144605
    IUPIKOV O A, IVASHINA M V, SKOU N, et al. Multibeam focal plane arrays with digital beamforming for high precision space-borne ocean remote sensing[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(2): 737–748. doi: 10.1109/TAP.2017.2763174
    ELMER M, JEFFS B D, WARNICK K F, et al. Beamformer design methods for radio astronomical phased array feeds[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 903–914. doi: 10.1109/TAP.2011.2173143
    CHIPPENDALE A P, MCCONNELL D, BANNISTER K, et al. Recent developments in measuring signal and noise in phased array feeds at CSIRO[C]. The 201610th European Conference on Antennas and Propagation, Davos, Switzerland, 2016: 1–5. doi: 10.1109/EuCAP.2016.7481741.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  4689
  • HTML全文浏览量:  1429
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-11
  • 修回日期:  2019-04-18
  • 网络出版日期:  2019-05-23
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回