高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于多尺度核学习的仿射投影滤波算法

李群生 赵剡 寇磊 王进达

李群生, 赵剡, 寇磊, 王进达. 一种基于多尺度核学习的仿射投影滤波算法[J]. 电子与信息学报, 2020, 42(4): 924-931. doi: 10.11999/JEIT190023
引用本文: 李群生, 赵剡, 寇磊, 王进达. 一种基于多尺度核学习的仿射投影滤波算法[J]. 电子与信息学报, 2020, 42(4): 924-931. doi: 10.11999/JEIT190023
Qunsheng LI, Yan ZHAO, Lei KOU, Jinda WANG. An Affine Projection Algorithm with Multi-scale Kernels Learning[J]. Journal of Electronics & Information Technology, 2020, 42(4): 924-931. doi: 10.11999/JEIT190023
Citation: Qunsheng LI, Yan ZHAO, Lei KOU, Jinda WANG. An Affine Projection Algorithm with Multi-scale Kernels Learning[J]. Journal of Electronics & Information Technology, 2020, 42(4): 924-931. doi: 10.11999/JEIT190023

一种基于多尺度核学习的仿射投影滤波算法

doi: 10.11999/JEIT190023
基金项目: 国家自然科学基金(61233005),航空基金(20160812004, 20160112002, 2016ZA12002)
详细信息
    作者简介:

    李群生:男,1977年生,博士,研究方向为滤波信号处理,组合导航技术

    赵剡:男,1956年生,教授,研究方向为惯性技术,信号处理技术

    寇磊:女,1971年生,高级工程师,研究方向为惯性技术

    王进达:男,1989年生,博士,研究方向为滤波信号处理,组合导航技术

    通讯作者:

    李群生 570658391@qq.com

  • 中图分类号: TN911.7, TP391

An Affine Projection Algorithm with Multi-scale Kernels Learning

Funds: The National Natural Science Foundation of China (61233005), The Aviation Science Fund (20160812004, 20160112002, 2016ZA12002)
  • 摘要:

    为了提高强非线性信号的噪声消除和信道均衡能力,在核学习自适应滤波方法的基础上,该文提出一种基于惊奇准则的多尺度核学习仿射投影滤波方法(SC-MKAPA)。在核仿射投影滤波算法的基础上,对核组合函数结构进行改进,将多个不同高斯核带宽作为可变参数,与加权系数共同参与滤波器的更新;利用惊奇准则将计算结果稀疏化,根据仿射投影算法的约束条件对惊奇测度进行改进,简化其方差项,降低了计算的复杂度。将该算法应用于噪声消除、信道均衡以及MG时间序列预测中,与多种自适应滤波算法及核学习自适应滤波算法进行仿真结果的对比分析,验证了该算法的优越性。

  • 图  1  滤波器除噪原理

    图  2  噪声分布

    图  3  对数条件下MSE的学习曲线

    图  4  对数条件下MSE的学习曲线

    图  5  MG时间序列的预测学习曲线

    表  1  算法参数

    算法核带宽收敛因子正则化参数$\delta $
    SC-MKAPA${\eta _1} = 1.0$, ${\eta _{\rm{2}}} = {\rm{0}}{\rm{.5}}$, ${\eta _{\rm{3}}} = 1{\rm{0}}$$\mu = 0.2$, $\Delta t = 0.01$5.0×10–3
    NC-MKAPA${\eta _1} = 1.0$, ${\eta _{\rm{2}}} = {\rm{0}}{\rm{.5}}$, ${\eta _{\rm{3}}} = 1{\rm{0}}$$\mu = 0.2$5.0×10–3
    NC-KAPA${\eta _1} = 1.0$$\mu = 0.2$5.0×10–3
    KLMS${\eta _1} = 1.0$$\mu = 0.2$5.0×10–3
    LMS${\eta _1} = 1.0$$\mu = 0.2$5.0×10–3
    下载: 导出CSV

    表  2  不同高次项下5种方法MMSE(dB)

    高次项$N$SC-MKAPANC-MKAPANC-KAPAKLMSLMS
    2–71.2–62.8–67.2–32.7–25.6
    3–62.1–56.9–60.6–24.4–19.3
    6–33.9–29.3–30.2–21.5–17.8
    7–18.3–16.3–15.2–13.3–12.9
    下载: 导出CSV
  • AIZERMAN A, BRAVERMAN E M, and ROZONER L I. Theoretical foundations of the potential function method in pattern recognition learning[J]. Automation and Remote Control, 1964, 25(5): 821–837.
    FRIEß T and HARRISON R F. A kernel-based adaline for function approximation[J]. Intelligent Data Analysis, 1999, 3(4): 307–313. doi: 10.3233/IDA-1999-3405
    庞业勇, 王少军, 彭宇, 等. 一种在线时间序列预测的核自适应滤波器向量处理器[J]. 电子与信息学报, 2016, 38(1): 53–62. doi: 10.11999/JEIT150157

    PANG Yeyong, WANG Shaojun, PENG Yu, et al. A kernel adaptive filter vector processor for online time series prediction[J]. Journal of Electronics &Information Technology, 2016, 38(1): 53–62. doi: 10.11999/JEIT150157
    BLANDON J S, VALENCIA C K, ALVAREZ A, et al. Shape classification using Hilbert space embeddings and kernel adaptive filtering[C]. The 15th International Conference Image Analysis and Recognition, Portugal, 2018: 245–251. doi: 10.1007/978-3-319-93000-8_28.
    GAO Wei, YAN Yi, ZHANG Lingling, et al. Convex combinations of multiple kernel adaptive filters[C]. 2017 IEEE International conference on Signal Processing, Communications and Computing, Xiamen, China, 2017: 1–5. doi: 10.1109/ICSPCC.2017.8242551.
    孙丹华, 孙亮, 王彬, 等. α稳定分布噪声下基于核方法的非线性信道均衡算法[J]. 信号处理, 2017, 33(3): 223–228. doi: 10.16798/j.issn.1003-0530.2017.02.013

    SUN Danhua, SUN Liang, WANG Bin, et al. Nonlinear channel equalization algorithm based on kernel method for α-stable noise[J]. Journal of Signal Processing, 2017, 33(3): 223–228. doi: 10.16798/j.issn.1003-0530.2017.02.013
    SHIN B S, YUKAWA M, CAVALCANTE R L G, et al. Distributed adaptive learning with multiple kernels in diffusion networks[J]. IEEE Transactions on Signal Processing, 2018, 66(21): 5505–5519. doi: 10.1109/TSP.2018.2868040
    HAN Yina, YANG Yixin, LI Xuelong, et al. Matrix-regularized multiple kernel learning via (r, p) Norms[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(10): 4997–5007. doi: 10.1109/TNNLS.2017.2785329
    LIU Yuqi, SUN Chao, and JIANG Shouda. A reduced gaussian kernel least-mean-square algorithm for nonlinear adaptive signal processing[J]. Circuits, Systems, and Signal Processing, 2019, 38(1): 371–394. doi: 10.1007/s00034-018-0862-0
    SHOAIB B, QURESHI I M, BUTT S A, et al. Adaptive step size kernel least mean square algorithm for Lorenz time series prediction[C]. The 12th International Bhurban Conference on Applied Sciences and Technology, Islamabad, Pakistan, 2015: 218–221. doi: 10.1109/IBCAST.2015.7058507.
    胡站伟, 焦立国, 徐胜金, 等. 基于多尺度重采样思想的类指数核函数构造[J]. 电子与信息学报, 2016, 38(7): 1689–1695. doi: 10.11999/JEIT151101

    HU Zhanwei, JIAO Liguo, XU Shengjin, et al. Design of an exponential-like kernel function based on multi-scale resampling[J]. Journal of Electronics &Information Technology, 2016, 38(7): 1689–1695. doi: 10.11999/JEIT151101
    PUAL T K and OGUNFUNMI T. A kernel adaptive algorithm for quaternion-valued inputs[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(10): 2422–2439. doi: 10.1109/TNNLS.2014.2383912
    NISHIKAWA K and NAKAZATO H. Mixture structure of kernel adaptive filters for improving the convergence characteristics[C]. 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, Hollywood, USA, 2012: 1–6.
    POKHAREL R, SETH S, and PRINCIPE J C. Mixture kernel least mean square[C]. 2013 International Joint Conference on Neural Networks, Dallas, USA, 2013: 1–7. doi: 10.1109/IJCNN.2013.6706867.
    VAN VAERENBERGH S, SCARDAPANE S, and SANTAMARIA I. Recursive multikernel filters exploiting nonlinear temporal structure[C]. The 25th European Signal Processing Conference, Kos, Greece, 2017: 2674–2678. doi: 10.23919/EUSIPCO.2017.8081696.
    SILVA M T M, CANDIDO R, ARENAS-GARCIA J, et al. Improving multikernel adaptive filtering with selective bias[C]. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, 2018: 4529–4533. doi: 10.1109/ICASSP.2018.8461290.
    ISHIDA T and TANAKA T. Multikernel adaptive filters with multiple dictionaries and regularization[C]. 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Kaohsiung, China, 2013: 1–6. doi: 10.1109/APSIPA.2013.6694279.
    TODA O and YUKAWA M. On kernel design for online model selection by Gaussian multikernel adaptive filtering[C]. Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Siem Reap, Camboya, 2014: 1–5. doi: 10.1109/APSIPA.2014.7041802.
    LIU Weifeng and PRÍNCIPE J. Kernel affine projection algorithms[J]. EURASIP Journal on Advances in Signal Processing, 2008, 2008: 784292. doi: 10.1155/2008/784292
    RICHARD C, BERMUDEZ J C M, and HONEINE P. Online prediction of time series data with kernels[J]. IEEE Transactions on Signal Processing, 2009, 57(3): 1058–1066. doi: 10.1109/TSP.2008.2009895
    GAO Wei, CHEN Jie, RICHARD C, et al. Kernel LMS algorithm with forward-backward splitting for dictionary learning[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 5735–5739. doi: 10.1109/ICASSP.2013.6638763.
    TAKIZAWA M A and YUKAWA M. An efficient sparse kernel adaptive filtering algorithm based on isomorphism between functional subspace and Euclidean space[C]. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 4508–4512. doi: 10.1109/ICASSP.2014.6854455.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1997
  • HTML全文浏览量:  955
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-09
  • 修回日期:  2019-07-30
  • 网络出版日期:  2020-01-11
  • 刊出日期:  2020-06-04

目录

    /

    返回文章
    返回