A Reliability-guarantee Method for Service Function Chain Deployment Based on Joint Backup
-
摘要: 在网络功能虚拟化(NFV)环境中,针对服务功能链(SFC)部署时的可靠性问题,该文提出对备份虚拟网络功能选择、备份实例放置和服务功能链部署的联合优化方法。首先,定义一个单位开销可靠性提高值的虚拟网络功能衡量标准,改进备份虚拟网络功能选择方法;其次,采用联合备份的方式调整相邻备份实例之间的放置策略,以降低带宽资源开销;最后,将整个服务功能链可靠性保障的部署问题构建成整数线性规划模型,并提出一种基于最短路径的启发式算法,克服整数线性规划求解的复杂性。仿真结果表明,该方法在优先满足网络服务可靠性需求的同时,优化资源配置,提高了请求接受率。
-
关键词:
- 网络功能虚拟化(NFV) /
- 服务功能链(SFC) /
- 可靠性 /
- 单位开销可靠性提高值 /
- 整数线性规划
Abstract: In the Network Function Virtualization (NFV) environment, for the reliability problem of Service Function Chain (SFC) deployment, a joint optimization method is proposed for backup Virtual Network Function (VNF) selection, backup instance placement and service function chain deployment. Firstly, the method defines a virtual network function measurement standard named the unit cost reliability improvement value to improve the backup virtual network function selection method. Secondly, the joint backup mode is used to adjust the placement strategy between adjacent backup instances to reduce bandwidth resources overhead. Finally, the reliability-guarantee problem of the whole service function chain deployment is modeled as integer linear programming, and a heuristic algorithm based on the shortest path is proposed to overcome the complexity of integer linear programming. The simulation results show that the method optimizes resource allocation while prioritizing the network service reliability requirements, and improves the request acceptance rate. -
表 1 基于ILP的保障SFC可靠性的部署方案
初始化输入 ${\rm{NU}}{{\rm{M}}_{ij}} = 1, (i \in {[1, \left| S \right|]_z}, j \in {[1, \left| {{F_i}} \right|]_z})$; Finished_flag=1; While true 求解最优化问题:目标函数式(6) 约束条件:式(7)—式(25)(线性化) 计算SFC的可靠性${Q_i}$ For $i = 1:\left| S \right|$ If ${Q_i} < Q_i^{{\rm{req}}}$ 选择单位开销可靠性提高值最大的VNF$j$进行备份; ${\rm{NU}}{{\rm{M}}_{ij}} = {\rm{NU}}{{\rm{M}}_{ij}} + 1$; If ${g_{ij}} = 0$; If VNF$j - 1$的备份实例可联合备份; ${g_{ij}} = 1$ End; Finished_flag=0; End 表 2 基于最短路径的贪婪保障SFC可靠性的部署方案
初始化输入 ${\rm{NU}}{{\rm{M}}_{ij}} = 1, (i \in {[1, \left| S \right|]_z}, j \in {[1, \left| {{F_i}} \right|]_z})$; For $i = 1:\left| S \right|$ 网络状态信息更新 生成初始路径集合${{\rm P}_i}$ For ${{\rm P}_i}$中选择初始路径$ip$ For $j = 1:\left| {{F_i}} \right|$ 沿着路径$ip$依次部署VNF$j$,同时考虑备份实例${\rm{NU}}{{\rm{M}}_{ij}}$和 ${g_{ij}}$的取值 End; If ${F_i}$中存在未部署的VNF实例 Continue; End; 计算SFC的可靠性${{\varTheta} _i}$ If ${Q_i} < Q_i^{{\rm{req}}}$ 选择单位开销可靠性提高值最大的VNF$j$进行备份; ${\rm{NU}}{{\rm{M}}_{ij}} = {\rm{NU}}{{\rm{M}}_{ij}} + 1$; If ${g_{ij}} = 0$ If VNF$j - 1$的备份资源可联合备份; ${g_{ij}} = 1$; End; End 表 3 8节点网络3条SFC的部署结果
算法 SFC 部署结果 可靠性 带宽使用率(%) 运行时间(s) IRG-SFC ${f_1} \to {f_2} \to {f_3}$ $8 \to 4\left( {{f_1}} \right) \to 7\left( {{f_2}} \right)\left( {3\left\{ {{f_1}, {f_2}} \right\}} \right) \to 2\left( {{f_3}} \right) \to 1\left( {{f_3}} \right) \to 5$ 0.99 17.18 463 ${f_1} \to {f_3} \to {f_2}$ $1 \to 2\left( {{f_1}} \right) \to 6\left( {{f_1}} \right) \to 3\left( {{f_3}} \right) \to 8\left( {{f_2}} \right)\left( {7\left\{ {{f_2}, {f_3}} \right\}} \right) \to 4$ 0.99 ${f_2} \to {f_1} \to {f_3}$ $3 \to 4\left( {{f_2}} \right) \to 7\left( {{f_2}} \right) \to 2\left( {{f_1}} \right) \to 5\left( {{f_3}} \right)\left( {6\left\{ {{f_1}, {f_3}} \right\}} \right) \to 1$ 0.99 GSP-SFC ${f_1} \to {f_2} \to {f_3}$ $8 \to 4\left( {{f_1}} \right) \to 6\left( {{f_2}} \right)\left( {3 \to 2\left\{ {{f_1}, {f_2}} \right\}} \right) \to 1\left( {{f_3}} \right) \to 5\left( {{f_3}} \right) \to 5$ 0.99 19.09 0.49 ${f_1} \to {f_3} \to {f_2}$ $1 \to 2\left( {{f_1}} \right) \to 6\left( {{f_1}} \right) \to 3\left( {{f_3}} \right) \to 8\left( {{f_2}} \right)\left( {7\left\{ {{f_2}, {f_3}} \right\}} \right) \to 4$ 0.99 ${f_2} \to {f_1} \to {f_3}$ $3 \to 4\left( {{f_2}} \right) \to 7\left( {{f_2}} \right) \to 2\left( {{f_1}} \right) \to 5\left( {{f_3}} \right)\left( {6\left\{ {{f_1}, {f_3}} \right\}} \right) \to 1$ 0.99 -
NGMN A. 5G White Paper[OL]. https://www.ngmn.org/5g-white-paper/5g-white-paper.html, 2015. BO Han, VIJAY G, JI Lusheng, et al. Network function virtualization: Challenges and opportunities for innovations[J]. IEEE Communications Magazine, 2015, 53(2): 90–97. doi: 10.1109/MCOM.2015.7045396 GIL H J, and FELIPE B J. Resource allocation in NFV: A comprehensive survey[J]. IEEE Transactions on Network & Service Management, 2017, 13(3): 518–532. doi: 10.1109/TNSM.2016.2598420 ALLEG A, TOUFIK A, MOS M, et al. Delay-aware VNF placement and chaining based on a flexible resource allocation approach[C]. The 13th International Conference on Network and Service Management, Tokyo, Japan, 2017: 1–7. OUS S, MAR M, CHAIMA G, et al. Energy efficient algorithm for VNF placement and chaining[C]. The 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Madrid, Spain, 2017: 579–588. 刘彩霞, 卢干强, 汤红波, 等. 一种基于Viterbi算法的虚拟网络功能自适应部署方法[J]. 电子与信息学报, 2016, 38(11): 2922–2930. doi: 10.11999/JEIT160045LIU Caixia, LU Ganqiang, TANG Hongbo, et al. Adaptive deployment method for virtualized network function based on viterbi algorithm[J]. Journal of Electronics &Information Technology, 2016, 38(11): 2922–2930. doi: 10.11999/JEIT160045 YUAN Quan, TANG Hongbo, YOU Wei, et al. Virtual network function scheduling via multilayer encoding genetic algorithm with distributed bandwidth allocation[J]. Science China Information Sciences, 2018, 61(9): 92–107. doi: 10.1007/s11432-017-9357-7 COT D, DE SIMONE L, IAN A K, et al. Network function virtualization: challenges and directions for reliability assurance[C]. IEEE International Symposium on Software Reliability Engineering Workshops. Naples, Italy, 2014: 37–42. SUN Jian, ZHU Guangyang, SUN Gang, et al. A reliability-aware approach for resource efficient virtual network function deployment[J]. IEEE Access, 2018, 6: 18238–18250. doi: 10.1109/ACCESS.2018.2815614 GEM A, VIS R, PAR C, et al. OpenNF: Enabling innovation in network function control[C]. ACM Conference on Sigcomm, Chicago, USA, 2014: 163–174. FAN Jingyuan, YE Zilong, GUAN Chaowen, et al. GREP: Guaranteeing reliability with enhanced protection in NFV[C]. ACM Sigcomm Workshop on Hot Topics in Middleboxes & Network Function Virtualization, London, United Kingdom, 2015: 13–18. QU Long, CHA A, KHA S, et al. A Reliability-aware network service chain provisioning with delay guarantees in NFV-enabled enterprise datacenter networks[J]. IEEE Transactions on Network and Service Management, 2017, 14(3): 554–568. doi: 10.1109/TNSM.2017.2723090 ZHU Zhikai, LU Hancheng, LI Jian, et al. Service function chain mapping with resource fragmentation avoidance[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6. SARA A, ZHANG Yanhong, and CHADI A. RAS: Reliable auto-scaling of virtual machines in multi-tenant cloud networks[C]. IEEE International Conference on Cloud Networking, Niagara Falls, Canada, 2015: 1–6. HOY A, and RAUSAND M. System Reliability Theory: Models and Statistical Methods[M]. WILEY: Hoboken, USA, 2004: 97–106. KHEB S, HADJI M, and ZEG D. Scalable and cost-efficient algorithms for VNF chaining and placement problem[C]. Innovations in Clouds, Internet & Networks, Paris, France, 2017: 92–99. YEN J Y. Finding the K shortest loopless paths in a network[J]. Management Science, 1971, 17(11): 712–716. doi: 10.1287/mnsc.17.11.712