高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于能效的NOMA蜂窝车联网动态资源分配算法

唐伦 肖娇 赵国繁 杨友超 陈前斌

唐伦, 肖娇, 赵国繁, 杨友超, 陈前斌. 基于能效的NOMA蜂窝车联网动态资源分配算法[J]. 电子与信息学报, 2020, 42(2): 526-533. doi: 10.11999/JEIT190006
引用本文: 唐伦, 肖娇, 赵国繁, 杨友超, 陈前斌. 基于能效的NOMA蜂窝车联网动态资源分配算法[J]. 电子与信息学报, 2020, 42(2): 526-533. doi: 10.11999/JEIT190006
Lun TANG, Jiao XIAO, Guofan ZHAO, Youchao YANG, Qianbin CHEN. Energy Efficiency Based Dynamic Resource Allocation Algorithm for Cellular Vehicular Based on Non-Orthogonal Multiple Access[J]. Journal of Electronics & Information Technology, 2020, 42(2): 526-533. doi: 10.11999/JEIT190006
Citation: Lun TANG, Jiao XIAO, Guofan ZHAO, Youchao YANG, Qianbin CHEN. Energy Efficiency Based Dynamic Resource Allocation Algorithm for Cellular Vehicular Based on Non-Orthogonal Multiple Access[J]. Journal of Electronics & Information Technology, 2020, 42(2): 526-533. doi: 10.11999/JEIT190006

基于能效的NOMA蜂窝车联网动态资源分配算法

doi: 10.11999/JEIT190006
基金项目: 国家自然科学基金(61571073),重庆市教委科学技术研究项目(KJZD-M201800601)
详细信息
    作者简介:

    唐伦:男,1973年生,教授,博士生导师,主要研究方向为新一代无线通信网络、异构蜂窝网络等

    肖娇:女,1995年生,硕士生,研究方向为蜂窝车联网络下的资源调度算法

    赵国繁:女,1993年生,硕士生,研究方向为5G网络切片中的资源分配,可靠性

    杨友超:男,1993年生,硕士生,研究方向为网络虚拟化和切片资源分配

    陈前斌:男,1967年生,教授,博士生导师,主要研究方向为个人通信、多媒体信息处理与传输、下一代移动通信网络、异构蜂窝网络等

    通讯作者:

    肖 娇 Ir_xiao@163.com

  • 中图分类号: TN929.5

Energy Efficiency Based Dynamic Resource Allocation Algorithm for Cellular Vehicular Based on Non-Orthogonal Multiple Access

Funds: The National Natural Science Foundation of China (61571073), The Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M201800601)
  • 摘要:

    在支持车与车直接通信(V2V)的非正交多址接入(NOMA)蜂窝网络场景下,针对V2V用户与蜂窝用户的干扰以及NOMA准则下的功率分配问题,该文提出一种基于能效的动态资源分配算法。该算法首先为了保证V2V用户的时延及可靠性同时满足蜂窝用户的速率需求,联合考虑子信道调度、功率分配和拥塞控制,建立了最大化系统能效的随机优化模型。其次,利用李雅普诺夫随机优化方法,通过控制可接入数据量保证队列稳定性以避免网络拥塞,并根据实时网络负载状态动态地进行资源调度,设计一种次优化子信道匹配算法获得用户调度方案,进一步,利用凸优化理论和拉格朗日对偶分解方法得到功率分配策略。最后,仿真结果表明,该文算法可以满足不同用户的服务质量(QoS)需求,并在保证网络稳定性前提下提高系统能效。

  • 图  1  密集城区场景下的车辆通信及干扰模型图

    图  2  连续时隙上的队列变化与控制参数V的关系

    图  3  平均能效与控制参数V的关系

    图  4  V2V用户平均时延与包到达率的关系

    图  5  平均能效与控制参数V的关系

    图  6  平均能效与NOMA用户最大功率和的关系

    表  1  基于能效的动态资源分配算法

     (1) 初始化控制参数$V$, NOMA用户队列${Q_i}(0) = 0$、虚拟队列${Q_k}(0) = 0$、${H_i}(0) = 0$, ${\varGamma _i}(t)$, $R_k^{\min }$, $\forall k \in K,i \in I$;
     (2) 设置时隙长度${T_{\max }}$;
     (3) For $t = 0,1, ··· ,{T_{\max }} - 1,$ do;
     (4) 观察该时隙每个NOMA用户的队列状态${Q_i}(t)$以及虚拟队列${Q_k}(t)$和${H_i}(t)$;
     (5) 计算辅助变量${\gamma _i}(t)$,然后根据式(18)和式(19)得到拥塞控制优化解$\varGamma _i^*$;
     (6) 执行表2求解优化问题式(16)得到子信道调度策略$x_i^*,\alpha _k^*$;
     (7) 执行表3求解问题式(21)得到优化的功率分配方案$\{ p_1^{\rm{*}},p_2^{\rm{*}},···,p_{M{\rm{ - }}1}^{\rm{*}}\} $;
     (8) 根据下面公式分别更新下一时隙NOMA用户的队列状态${Q_i}(t + 1)$,虚拟队列状态${Q_k}(t + 1)$和${H_i}(t + 1)$;
       ${Q_i}(t + 1) = \max \{ {Q_i}(t) + {\varGamma _i}(t) - {r_i}(t),0\} ,\;\;\forall i$, ${Q_k}(t + 1) = \max \{ {Q_k}(t) + R_k^{\min } - {r_k}(t),0\} ,\forall k$;
       ${H_i}(t + 1) = \max \{ {H_i}(t) - {\varGamma _i}(t) + {\gamma _i}(t),0\} ,\forall i$;
     (9) $t = t + 1$;
     (10) End;
     (11) 输出优化拥塞控制策略、频谱和功率分配方案$\varGamma _i^*$, $x_i^*,\alpha _k^*$, $p_i^*,p_k^*$。
    下载: 导出CSV

    表  2  联合次优化子信道匹配算法

     (1) 初始化${p_i},{p_k}$, ${Q_i}(0) = 0$, ${Q_k}(0) = 0$, ${H_i}(0) = 0$,初始化未分配子信道的NOMA和V2V用户集$S_{{\rm{un}}}^C$, $S_{{\rm{un}}}^V$,复用同一信道的用户集
      ${{U}} = \{ U_1,U_2,···,U_N\} $, ${\psi _n} = \varnothing $,用户调度策略${{x}} = \varnothing ,{{\alpha}} = \varnothing $,分别构造NOMA用户和V2V用户的信道增益矩阵,${{ H}_i} \triangleq {[|{h_{i,n}}|]_{I \times N}}$,
      ${{ H}_k} \triangleq {[|{h_{k,n}}|]_{K \times N}}$;
     (2) while ${S_{{\rm{un}}}}^C \ne \varnothing $&${S_{\rm{un}}}^V \ne \varnothing$ do;
     (3) for $n = 1:N$;
     (4) 从${{ H}_i}$中找到最大信道增益,将子信道$n$调度给用户$i$,更新${{x}}$,并将矩阵中的第$i$行元素置0;
     (5) 更新${U_n} = {U_n} \cup u_n^i$ & $S_{{\rm{un}}}^C = S_{{\rm{un}}}^C\backslash u_n^i$;
     (6) end for;
     (7) for $n = 1:N$;
     (8) while ${N_{{U_n}}} < M$ do;
     (9)  分别从信道矩阵${{ H}_i}$和${{ H}_k}$ 中找到最大信道增益$|{h_{i,n}}|$和$|{h_{k,n}}|$;
     (10)   if ${\rm{|}}{h_{i,n}}| > {h_{k,n}}|$;
     (11)    将子信道$n$分配给用户$i$,更新${U_n} = {U_n} \cup u_i^n$;
     (12)   else;
     (13)    将子信道$n$分配给用户$k$,更新${U_n} = {U_n} \cup u_k^n$;
     (14)   end if;
     (15) end while;
     (16)   if ${N_{{U_n}}} = M$;
     (17)   计算用户集${U_n}$复用在子信道$n$上的$\varphi (t)$,并将结果保存于${\psi _n}$
     (18)   求解式(16)得到用户调度的解$x_i^n,\alpha _k^n$以及被调度用户集$u_n^C,u_n^V$,更新未调度用户集$S_{un}^C = S_{un}^C\backslash u_n^C$ & $S_{un}^V = S_{un}^V\backslash u_n^V$,并将
    信道矩阵${{ H}_i}$中的第$i$行置0,或将${{ H}_k}$中的第$k$行元素及第$n$列元素置0;
     (19)   end if;
     (20) end for;
     (21) end while;
     (22) 输出用户调度策略${{x}},{{\alpha}} $。
    下载: 导出CSV

    表  3  基于连续凸逼近和拉格朗日对偶的迭代功率优化算法

     (1) 初始化最大迭代次数${T_1}$及最大允许误差${\xi _1}$,初始化${[{\tilde p_i}(t),{\tilde p_k}(t)]^0}$,迭代次数索引$t$;
     (2) while $g \le {T_1}$ or ${\rm{||}}\tilde \varphi ({[{\tilde p_i}(t),{\tilde p_k}(t)]^g}) - \tilde \varphi ({[{\tilde p_i}(t),{\tilde p_k}(t)]^{g - 1}})|| \le {\xi _1}$ do;
     (3)  根据迭代得到的${[{\tilde p_i}(t),{\tilde p_k}(t)]^g}$和$\tilde r_k^n$, $\tilde r_i^n$计算$c_k^n$ $d_k^n$ $c_i^n$ $d_i^n$,得到更新后的${{{c}}^g},{{{d}}^g}$;
     (4)  求解优化问题式(20),更新当前最优解${[{\tilde p_i}(t),{\tilde p_k}(t)]^{{\rm{g + 1}}}}$并令$g = g + 1$;
     (5) end while;
     (6) 输出连续凸逼近迭代后的优化解$\tilde P(t) = {\left[ {{{\tilde p}_i}(t),\tilde p{}_k(t)} \right]^g}$;
     (7) 初始化最大迭代次数${N_1}$和${N_2}$及收敛条件${\varDelta _1}$和${\varDelta _2}$,初始化迭代索引$m = 0,n = 0$,初始化拉格朗日乘子${\nu ^0},{\lambda ^0},{\mu ^0},{\eta ^0}$,
       ${[{\tilde p_i}{(t)_m},\tilde p{}_k{(t)_m}]^0} = {[{\tilde p_i}{(t)_n},{\tilde p_k}{(t)_n}]^0} = {[{\tilde p_i}(t),{\tilde p_k}(t)]^g}$;
     (8) 观察时隙$t$每个NOMA用户的队列状态${Q_i}(t)$和虚拟队列状态${Q_k}(t)$, ${H_i}(t)$;
     (9) while $m < {N_1}$ or ${\rm{||} }\tilde \varphi ({[{\tilde p_i}{(t)_m},{\tilde p_k}{(t)_m}]^{m + 1} }) - \tilde \varphi ({[{\tilde p_i}{(t)_m},{\tilde p_k}{(t)_m}]^m})|| \ge {\varDelta _1}$ do;
     (10) while $n < {N_2}$ or $||{J^{n + 1} }(t) - {J^n}(t)|| \ge {\varDelta _2}$ do;
     (11)  将${\nu ^m},{\lambda ^m},{\mu ^m},{\eta ^m}$和${[{\tilde p_i}{(t)_n},{\tilde p_k}{(t)_n}]^n}$分别代入表达式(21)求导;
     (12)  通过KKT条件和二分搜索法求得功率分配${[{\tilde p_i}{(t)_n},{\tilde p_k}{(t)_n}]^{n + 1}}$,更新拉格朗日乘子;
     (13)  $n = n + 1$;
     (14) end while;
     (15)  $m = m + 1$;
     (16) end while;
    下载: 导出CSV
  • 3GPP. Study on LTE-based V2X services 14.0.0[R]. 3GPP TR 36.885, 2016.
    3GPP. Study on enhancement of 3GPP support for 5G V2X services 16.2.0[R]. 3GPP TR 22.886, 2017.
    SAHIN T, KLUGEL M, ZHOU Chan, et al. Virtual cells for 5G V2X communications[J]. IEEE Communications Standards Magazine, 2018, 2(1): 22–28. doi: 10.1109/MCOMSTD.2018.1700060
    YANG Zhaohui, XU Wei, PAN Cunhua, et al. On the optimality of power allocation for NOMA downlinks with individual QoS constraints[J]. IEEE Communications Letters, 2017, 21(7): 1649–1652. doi: 10.1109/LCOMM.2017.2689763
    PAN Yijin, PAN Cunhua, YANG Zhaohui, et al. Resource allocation for D2D communications underlaying a NOMA-based cellular network[J]. IEEE Wireless Communications Letters, 2018, 7(1): 130–133. doi: 10.1109/LWC.2017.2759114
    LIANG Le, LI G Y, and XU Wei. Resource allocation for D2D-enabled vehicular communications[J]. IEEE Transactions on Communications, 2017, 65(7): 3186–3197. doi: 10.1109/TCOMM.2017.2699194
    LIU Chenfeng and BENNIS M. Ultra-reliable and low-latency vehicular transmission: An extreme value theory approach[J]. IEEE Communications Letters, 2018, 22(6): 1292–1295. doi: 10.1109/LCOMM.2018.2828407
    SUN Wanlu, STRÖM E, BRÄNNSTRÖM F, et al. Radio resource management for D2D-based V2V communication[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6636–6650. doi: 10.1109/TVT.2015.2479248
    SUN Wanlu, STRÖM E, BRÄNNSTRÖM F, et al. D2D-based V2V communications with latency and reliability constraints[C]. 2014 IEEE Globecom Workshops, Austin, USA, 2014: 1414–1419. doi: 10.1109/GLOCOMW.2014.7063632.
    PENG Mugen, YU Yuling, XIANG Hongyu, et al. Energy-efficient resource allocation optimization for multimedia heterogeneous cloud radio access networks[J]. IEEE Transactions on Multimedia, 2016, 18(5): 879–892. doi: 10.1109/TMM.2016.2535722
    LAU V K N, ZHANG Fan, and CUI Ying. Low complexity delay-constrained beamforming for multi-user MIMO systems with imperfect CSIT[J]. IEEE Transactions on Signal Processing, 2013, 61(16): 4090–4099. doi: 10.1109/TSP.2013.2264058
    CHUNG S T and GOLDSMITH A J. Degrees of freedom in adaptive modulation: A unified view[J]. IEEE Transactions on Communications, 2001, 49(9): 1561–1571. doi: 10.1109/26.950343
    LI Jian, PENG Mugen, YU Yuling, et al. Energy-efficient joint congestion control and resource optimization in heterogeneous cloud radio access networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 9873–9887. doi: 10.1109/TVT.2016.2531184
    ZHAO Long and WANG Xiaodong. Round-trip energy efficiency of wireless energy powered massive MIMO system with latency constraint[J]. IEEE Communications Letters, 2017, 21(1): 12–15. doi: 10.1109/LCOMM.2016.2616858
    KHAN Z, FAN Pingzhi, ABBAS F, et al. Two-level cluster based routing scheme for 5G V2X communication[J]. IEEE Access, 2019, 7: 16194–16205. doi: 10.1109/ACCESS.2019.2892180
    ZHANG Yi, WANG Huiming, ZHENG Tongxing, et al. Energy-efficient transmission design in non-orthogonal multiple access[J]. IEEE Transactions on Vehicular Technology, 2017, 66(3): 2852–2857. doi: 10.1109/TVT.2016.2578949
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  3471
  • HTML全文浏览量:  1086
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-03
  • 修回日期:  2019-05-28
  • 网络出版日期:  2019-11-25
  • 刊出日期:  2020-02-19

目录

    /

    返回文章
    返回