高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于压缩边界Fisher分析的硬件木马检测方法

王晓晗 王韬 李雄伟 张阳 黄长阳

王晓晗, 王韬, 李雄伟, 张阳, 黄长阳. 一种基于压缩边界Fisher分析的硬件木马检测方法[J]. 电子与信息学报, 2019, 41(12): 3043-3050. doi: 10.11999/JEIT190004
引用本文: 王晓晗, 王韬, 李雄伟, 张阳, 黄长阳. 一种基于压缩边界Fisher分析的硬件木马检测方法[J]. 电子与信息学报, 2019, 41(12): 3043-3050. doi: 10.11999/JEIT190004
Xiaohan WANG, Tao WANG, Xiongwei LI, Yang ZHANG, Changyang HUANG. A Hardware Trojan Detection Method Based on Compression Marginal Fisher Analysis[J]. Journal of Electronics & Information Technology, 2019, 41(12): 3043-3050. doi: 10.11999/JEIT190004
Citation: Xiaohan WANG, Tao WANG, Xiongwei LI, Yang ZHANG, Changyang HUANG. A Hardware Trojan Detection Method Based on Compression Marginal Fisher Analysis[J]. Journal of Electronics & Information Technology, 2019, 41(12): 3043-3050. doi: 10.11999/JEIT190004

一种基于压缩边界Fisher分析的硬件木马检测方法

doi: 10.11999/JEIT190004
基金项目: 国家自然科学基金(61602505)
详细信息
    作者简介:

    王晓晗:男,1992年生,博士生,研究方向为芯片安全技术

    王韬:男,1964年生,教授,博士,研究方向为信息安全与网络对抗

    李雄伟:男,1975年生,副教授,博士,研究方向为芯片安全技术

    张阳:男,1984年生,讲师,博士,研究方向为集成电路安全

    黄长阳:男,1994年生,硕士生,研究方向为网络安全技术

    通讯作者:

    李雄伟 lxw-wys@163.com

  • 中图分类号: TN918

A Hardware Trojan Detection Method Based on Compression Marginal Fisher Analysis

Funds: The National Natural Science Foundation of China (61602505)
  • 摘要: 针对物理环境下旁路分析技术对电路中规模较小的硬件木马检出率低的问题,该文引入边界Fisher分析(MFA)方法,并提出一种基于压缩边界Fisher分析(CMFA)的硬件木马检测方法。通过减小样本的同类近邻样本与该样本以及类中心之间距离和增大类中心的同类近邻样本与异类样本之间距离的方式,构建投影空间,发现原始功耗旁路信号中的差异特征,实现硬件木马检测。AES加密电路中的硬件木马检测实验表明,该方法具有比已有检测方法更高的检测精度,能够检测出占原始电路规模0.04%的硬件木马。
  • 图  1  MFA算法的基本思想

    图  2  CMFA算法的基本思想

    图  3  压缩图原理分析

    图  4  内核差异图原理分析

    图  5  采用K-L变换, 核MMC, MFA和CMFA对木马1的检测结果

    图  6  采用K-L变换, 核MMC, MFA和CMFA对木马2的检测结果

    图  7  对两种硬件木马的10次检测结果

  • DOFE J, FREY J, and YU Qiaoyu. Hardware security assurance in emerging IoT applications[C]. 2016 IEEE International Symposium on Circuits and Systems, Montreal, Canada, 2016: 2050–2053.
    SUMATHI G, SRIVANI L, MURTHY D T, et al. A review on HT attacks in PLD and ASIC designs with potential defence solutions[J]. IETE Technical Review, 2018, 35(1): 64–77. doi: 10.1080/02564602.2016.1246385
    CHAKRABORTY R S, WOLFF F, PAUL S, et al. MERO: A statistical approach for hardware Trojan detection[C]. The 11th International Workshop on Cryptographic Hardware and Embedded Systems, Switzerland, 2009: 396–410.
    SAHA S, CHAKRABORTY R S, NUTHAKKI S S, et al. Improved test pattern generation for hardware Trojan detection using genetic algorithm and Boolean satisfiability[C]. The 17th International Workshop on Cryptographic Hardware and Embedded Systems, Saint-Malo, France, 2015: 577–596.
    LESPERANCE N, KULKARNI S, CHENG K T, et al. Hardware Trojan detection using exhaustive testing of k-bit subspaces[C]. The 20th Asia and South Pacific Design Automation Conference, Chiba, Japan, 2015: 755–760.
    XUE Mingfu, HU Aiqun, and LI Guyue. Detecting hardware Trojan through heuristic partition and activity driven test pattern generation[C]. 2014 Communications Security Conference, Beijing, China, 2014: 1–6.
    AGRAWAL D, BAKTIR S, KARAKOYUNLU D, et al. Trojan detection using IC fingerprinting[C]. 2007 IEEE Symposium on Security and Privacy, Berkeley, USA, 2007: 296–310.
    HE Jiaji, ZHAO Yiqiang, GUO Xiaolong, et al. Hardware Trojan detection through chip-free electromagnetic side-channel statistical analysis[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017, 25(10): 2939–2948. doi: 10.1109/TVLSI.2017.2727985
    XIAO Kan, ZHANG Xuehui, and TEHRANIPOOR M. A clock sweeping technique for detecting hardware trojans impacting circuits delay[J]. IEEE Design & Test, 2013, 30(2): 26–34. doi: 10.1109/MDAT.2013.2249555
    薛明富, 王箭, 胡爱群. 自适应优化的二元分类型硬件木马检测方法[J]. 计算机学报, 2018, 41(2): 439–451. doi: 10.11897/SP.J.1016.2018.00439

    XUE Mingfu, WANG Jian, and HU Aiqun. Adaptive optimization of two-class classification-based hardware Trojan detection method[J]. Chinese Journal of Computers, 2018, 41(2): 439–451. doi: 10.11897/SP.J.1016.2018.00439
    骆扬, 王亚楠. 物理型硬件木马失效机理及检测方法[J]. 物理学报, 2016, 65(11): 110602. doi: 10.7498/APS.65.110602

    LUO Yang and WANG Yanan. Physical hardware trojan failure analysis and detection method[J]. Acta Physica Sinica, 2016, 65(11): 110602. doi: 10.7498/APS.65.110602
    张鹏, 王新成, 周庆. 基于投影寻踪分析的芯片硬件木马检测[J]. 通信学报, 2013, 34(4): 122–126. doi: 10.3969/J.ISSN.1000-436x.2013.04.014

    ZHANG Peng, WANG Xincheng, and ZHOU Qing. Hardware Trojans detection based on projection pursuit[J]. Journal on Communications, 2013, 34(4): 122–126. doi: 10.3969/J.ISSN.1000-436x.2013.04.014
    李雄伟, 王晓晗, 张阳, 等. 一种基于核最大间距准则的硬件木马检测新方法[J]. 电子学报, 2017, 45(3): 656–661. doi: 10.3969/J.ISSN.0372-2112.2017.03.023

    LI Xiongwei, WANG Xiaohan, ZHANG Yang, et al. A new hardware Trojan detection method based on kernel maximum margin criterion[J]. Acta Electronica Sinica, 2017, 45(3): 656–661. doi: 10.3969/J.ISSN.0372-2112.2017.03.023
    赵毅强, 刘沈丰, 何家骥, 等. 基于自组织竞争神经网络的硬件木马检测方法[J]. 华中科技大学学报: 自然科学版, 2016, 44(2): 51–55. doi: 10.13245/J.HUST.160211

    ZHAO Yiqiang, LIU Shenfeng, HE Jiaji, et al. Hardware Trojan detection technology based on self-organizing competition neural network[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2016, 44(2): 51–55. doi: 10.13245/J.HUST.160211
    YAN Shuicheng, XU Dong, ZHANG Benyu, et al. Graph embedding and extensions: A general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40–51. doi: 10.1109/TPAMI.2007.250598
    何进荣, 丁立新, 崔梦天, 等. 基于矩阵指数变换的边界Fisher分析[J]. 计算机学报, 2014, 37(10): 2196–2205.

    HE Jinrong, DING Lixin, CUI Mengtian, et al. Marginal Fisher analysis based on matrix exponential transformation[J]. Chinese Journal of Computers, 2014, 37(10): 2196–2205.
    李艳霞, 柴毅, 胡友强, 等. 不平衡数据分类方法综述[J]. 控制与决策, 2019, 34(4): 673–688. doi: 10.13195/J.KZYJC.2018.0865

    LI Yanxia, CHAI Yi, HU Youqiang, et al. Review of imbalanced data classification methods[J]. Control and Decision, 2019, 34(4): 673–688. doi: 10.13195/J.KZYJC.2018.0865
  • 加载中
图(7)
计量
  • 文章访问数:  2206
  • HTML全文浏览量:  872
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-03
  • 修回日期:  2019-03-14
  • 网络出版日期:  2019-05-28
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回