高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于贝叶斯自动相关性确定的稀疏重构正交频分复用信号时延估计算法

崔维嘉 张鹏 巴斌

崔维嘉, 张鹏, 巴斌. 基于贝叶斯自动相关性确定的稀疏重构正交频分复用信号时延估计算法[J]. 电子与信息学报, 2019, 41(10): 2318-2324. doi: 10.11999/JEIT181181
引用本文: 崔维嘉, 张鹏, 巴斌. 基于贝叶斯自动相关性确定的稀疏重构正交频分复用信号时延估计算法[J]. 电子与信息学报, 2019, 41(10): 2318-2324. doi: 10.11999/JEIT181181
Weijia CUI, Peng ZHANG, Bin BA. Sparse Reconstruction OFDM Delay Estimation Algorithm Based on Bayesian Automatic Relevance Determination[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2318-2324. doi: 10.11999/JEIT181181
Citation: Weijia CUI, Peng ZHANG, Bin BA. Sparse Reconstruction OFDM Delay Estimation Algorithm Based on Bayesian Automatic Relevance Determination[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2318-2324. doi: 10.11999/JEIT181181

基于贝叶斯自动相关性确定的稀疏重构正交频分复用信号时延估计算法

doi: 10.11999/JEIT181181
基金项目: 国家自然科学基金(61401513)
详细信息
    作者简介:

    崔维嘉:男,1976年生,博士,副教授,研究方向为移动通信、信号处理等

    张鹏:男,1993年生,硕士生,研究方向为通信信号处理、稀疏重构等

    巴斌:男,1987年生,博士,讲师,研究方向为阵列信号处理、参数估计等

    通讯作者:

    张鹏 ieu_zp@outlook.com

  • 中图分类号: TN911.7

Sparse Reconstruction OFDM Delay Estimation Algorithm Based on Bayesian Automatic Relevance Determination

Funds: The National Natural Science Foundation of China (61401513)
  • 摘要: 针对复杂环境下,单测量矢量(SMV)条件下的正交频分复用(OFDM)时延估计问题,该文提出了一种基于贝叶斯自动相关性确定(BARD)的稀疏重构时延估计算法。该算法运用贝叶斯框架,从进一步挖掘有用信息的角度入手,引入不对称的自动相关性确定(ARD)先验,融入参数估计过程中,有效提升了低信噪比(SNR)和SMV条件下的时延估计精度。该算法首先基于OFDM信号物理层协议数据单元估计出的信道频域响应构造稀疏化实数域表示模型,然后对模型中的噪声和稀疏系数矢量进行概率假设,同时引入自动相关性确定先验;最后根据贝叶斯框架,通过期望最大化(EM)算法求解超参数,实现对时延的估计。仿真实验表明,该算法具有更好的估计性能,在信噪比较高时更加贴近克拉美罗界(CRB)。同时基于通用软件无线电外设(USRP),利用实际信号对所提算法进行了有效性地验证。
  • 图  1  贝叶斯推断理论框图

    图  2  时延估计值分布图

    图  3  不同算法均方根误差对比图

    图  4  不同多径数条件下直达径时延估计RMSE对比图

    图  5  实际信号测试场景

    表  1  OFDM系统参数设置

    参数数值
    FFT周期${T_{{\rm{FFT}}}}(\mu s)$3.2
    系统带宽$B({\rm{MHz}})$20
    子载波数(个)64
    载波频率${f_{\rm{c}}}{\rm{(GHz}})$2.4
    下载: 导出CSV

    表  2  各种算法时延估计结果比较(ns)

    算法多径序号
    1234
    均值RMSE均值均值均值
    PM218.4010.81270.93302.16308.16
    CoSaMP211.0010.57262.33287.50298.06
    MFOCUSS204.164.50258.16287.66307.20
    BARD201.531.17253.00283.00314.32
    下载: 导出CSV
  • VAN NEE R and PRASAD R. OFDM for Wireless Multimedia Communications[M]. Boston: Artech House, 2000: 3–4.
    SEGURA M J, MUT V A, and PATIÑO H D. Mobile robot self-localization system using IR-UWB sensor in indoor environments[C]. 2009 IEEE International Workshop on Robotic and Sensors Environments, Lecco, Italy, 2009: 29–34.
    CHAN Y T, HANG H Y C, and CHING P C. Exact and approximate maximum likelihood localization algorithms[J]. IEEE Transactions on Vehicular Technology, 2006, 55(1): 10–16. doi: 10.1109/TVT.2005.861162
    CELEBI H and ARSLAN H. Adaptive positioning systems for cognitive radios[C]. 2007 IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Dublin, Ireland, 2007: 78–84.
    LIU Ying and WANG Shuxun. TOA estimation method using fourth order cumulants[C]. 2000 International Conference on Signal Processing. 16th World Computer Congress 2000, Beijing, China, 2000: 210–214.
    巴斌, 刘国春, 李韬, 等. 基于哈达玛积扩展子空间的到达时间和波达方向联合估计[J]. 物理学报, 2015, 64(7): 078403. doi: 10.7498/aps.64.078403

    BA Bin, LIU Guochun, LI Tao, et al. Joint for time of arrival and direction of arrival estimation algorithm based on the subspace of extended hadamard product[J]. Acta Physica Sinica, 2015, 64(7): 078403. doi: 10.7498/aps.64.078403
    BIALER O, RAPHAELI D, and WEISS A J. Robust time-of-arrival estimation in multipath channels with OFDM signals[C]. 2017 Signal Processing Conference, Kos, Greece, 2017: 2724–2728.
    CHEN Yajun, PENG Jianhua, HUANG Kaizhi, et al. A multipath delay estimation model and algorithm in OFDM systems[C]. 2014 IEEE International Conference on Information Science and Technology, Shenzhen, China, 2014: 144–147.
    巴斌, 郑娜娥, 胡捍英, 等. OFDM系统中基于PM的时延估计算法[J]. 太赫兹科学与电子信息学报, 2016, 14(3): 355–360. doi: 10.11805/TKYDA201603.0355

    BA Bin, ZHENG Nae, HU Hanying, et al. Time delay estimation based on PM in OFDM system[J]. Journal of Terahertz Science and Electronic Information Technology, 2016, 14(3): 355–360. doi: 10.11805/TKYDA201603.0355
    LI Xinrong and PAHLAVAN K. Super-resolution TOA estimation with diversity for indoor geolocation[J]. IEEE Transactions on Wireless Communications, 2004, 3(1): 224–234. doi: 10.1109/TWC.2003.819035
    HÄCKER P and YANG B. Single snapshot DOA estimation[J]. Advances in Radio Science, 2010, 8: 251–256. doi: 10.5194/ars-8-251-2010
    李晶, 赵拥军, 李冬海. 基于马尔科夫链蒙特卡罗的时延估计算法[J]. 物理学报, 2014, 63(13): 130701. doi: 10.7498/aps.63.130701

    LI Jing, ZHAO Yongjun, and LI Donghai. Time delay estimation using Markov Chain Monte Carlo method[J]. Acta Physica Sinica, 2014, 63(13): 130701. doi: 10.7498/aps.63.130701
    冷雪冬, 巴斌, 逯志宇, 等. 基于回溯筛选的稀疏重构时延估计算法[J]. 物理学报, 2016, 65(21): 210701. doi: 10.7498/aps.65.210701

    LENG Xuedong, BA Bin, LU Zhiyu, et al. Sparse reconstruction time delay estimation algorithm based on backtracking filter[J]. Acta Physica Sinica, 2016, 65(21): 210701. doi: 10.7498/aps.65.210701
    COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors[J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477–2488. doi: 10.1109/TSP.2005.849172
    尹艳玲, 乔钢, 刘凇佐, 等. 基于基追踪去噪的水声正交频分复用稀疏信道估计[J]. 物理学报, 2015, 64(6): 064301. doi: 10.7498/aps.64.064301

    YIN Yanling, QIAO Gang, LIU Songzuo, et al. Sparse channel estimation of underwater acoustic orthogonal frequency division Multiplexing based on basis pursuit denoising[J]. Acta Physica Sinica, 2015, 64(6): 064301. doi: 10.7498/aps.64.064301
    NEAL R M. Bayesian Learning for Neural Networks[M]. New York: Springer-Verlag, 1996: 112–114.
    WIPF D and NAGARAJAN S. A new view of automatic relevance determination[C]. The 20th International Conference on Neural Information Processing Systems, Vancouver, Canada, 2007: 1625–1632.
    GAST M S, O’Reilly Taiwan公司, 译. 802.11无线网络权威指南[M]. 2版. 南京: 东南大学出版社, 2007: 293–297.

    GAST M S, O’Reilly Taiwan, translation. 802.11 Wireless Netwoeks: The Definitive Guide[M]. 2nd ed. Nanjing: Southeast University Press, 2007: 293–297.
    KIM J M, LEE O K, and YE J C. Compressive MUSIC: Revisiting the link between compressive sensing and array signal processing[J]. IEEE Transactions on Information Theory, 2012, 58(1): 278–301. doi: 10.1109/TIT.2011.2171529
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  2202
  • HTML全文浏览量:  1192
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-24
  • 修回日期:  2019-04-12
  • 网络出版日期:  2019-04-25
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回