高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于马尔科夫决策过程的多传感器协同检测与跟踪调度方法

徐公国 单甘霖 段修生 乔成林 王浩天

徐公国, 单甘霖, 段修生, 乔成林, 王浩天. 基于马尔科夫决策过程的多传感器协同检测与跟踪调度方法[J]. 电子与信息学报, 2019, 41(9): 2201-2208. doi: 10.11999/JEIT181129
引用本文: 徐公国, 单甘霖, 段修生, 乔成林, 王浩天. 基于马尔科夫决策过程的多传感器协同检测与跟踪调度方法[J]. 电子与信息学报, 2019, 41(9): 2201-2208. doi: 10.11999/JEIT181129
Gongguo XU, Ganlin SHAN, Xiusheng DUAN, Chenglin QIAO, Haotian WANG. Scheduling Method Based on Markov Decision Process for Multi-sensor Cooperative Detection and Tracking[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2201-2208. doi: 10.11999/JEIT181129
Citation: Gongguo XU, Ganlin SHAN, Xiusheng DUAN, Chenglin QIAO, Haotian WANG. Scheduling Method Based on Markov Decision Process for Multi-sensor Cooperative Detection and Tracking[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2201-2208. doi: 10.11999/JEIT181129

基于马尔科夫决策过程的多传感器协同检测与跟踪调度方法

doi: 10.11999/JEIT181129
详细信息
    作者简介:

    徐公国:男,1990年生,博士生,研究方向为传感器管理、信息融合

    单甘霖:男,1962年生,教授,博士生导师,研究方向为信息融合理论与应用、武器系统仿真

    段修生:男,1970年生,教授,博士生导师,研究方向为电子装备故障诊断、信息融合

    乔成林:男,1990年生,博士生,研究方向为信息融合、传感器管理

    王浩天:男,1989年生,博士生,研究方向为故障诊断、智能优化算法

    通讯作者:

    单甘霖 shanganlin@163.com

  • 中图分类号: TP391

Scheduling Method Based on Markov Decision Process for Multi-sensor Cooperative Detection and Tracking

  • 摘要: 针对多任务场景下的传感器调度问题,该文提出一种面向目标协同检测与跟踪的多传感器调度方法。首先,该方法基于部分可观马尔科夫决策过程(POMDP)构建传感器调度模型,并基于后验克拉美-罗下界(PCRLB)设计优化目标函数。其次,考虑传感器切换时间和目标数目的时变性,采用随机分布粒子计算新生目标的检测概率,给出了固定目标数目和时变目标数目情形下的传感器调度方法。最后,为满足在线调度的实时性需求,采用自适应多种群协同差分进化(AMCDE)算法求解传感器调度方案。仿真结果表明,该方法能够有效应对多任务场景,实现多传感器资源的合理调度。
  • 图  1  基于POMDP的多传感器协同调度过程

    图  2  传感器调度时序图

    图  3  多种群协同策略

    图  4  场景1示意图

    图  5  目标1运动模型估计概率变化曲线

    图  6  目标1估计位置RMSE

    图  7  目标2估计位置RMSE

    图  8  场景2示意图

    图  9  第14时刻传感器调度方案

    图  12  第40时刻传感器调度方案

    图  10  第15时刻传感器调度方案

    图  11  第39时刻传感器调度方案

    表  1  几种DE算法变异策略

    策略名称变异公式
    Rand经典${\text{V}}_l^{j + 1} = {\text{Y}}_{{\rm{r1}}}^j + \beta ({\text{Y}}_{{\rm{r2}}}^j - {\text{Y}}_{{\rm{r3}}}^j)$
    Best${\text{V}}_l^{j + 1} = {\text{Y}}_{\rm{b}}^j + \beta ({\text{Y}}_{{\rm{r2}}}^j - {\text{Y}}_{{\rm{r3}}}^j)$
    Rand-to-Best${\text{V}}_l^{j + 1} = {\text{Y}}_{{\rm{r1}}}^j + {\beta _1}({\text{Y}}_{\rm{b}}^j - {\text{Y}}_{{\rm{r1}}}^j) + {\beta _2}({\text{Y}}_{{\rm{r2}}}^j - {\text{Y}}_{{\rm{r3}}}^j)$
    Target-to-Best${\text{V}}_l^{j + 1} = {\text{Y}}_l^j + {\beta _1}({\text{Y}}_{\rm{b}}^j - {\text{Y}}_l^j) + {\beta _2}({\text{Y}}_{{\rm{r2}}}^j - {\text{Y}}_{{\rm{r3}}}^j)$
    下载: 导出CSV

    表  2  求解算法性能比较

    算法名称寻优平均值寻得最优平均步数单次运算平均时间(s)
    DE35.7230.780.37
    IVDE21.2418.060.45
    CDE23.3022.120.40
    AMCDE21.2916.630.39
    下载: 导出CSV
  • 乔成林, 单甘霖, 段修生, 等. 面向跟踪任务需求的主动传感器调度方法[J]. 系统工程与电子技术, 2017, 39(11): 2515–2521. doi: 10.3969/j.issn.1001-506X.2017.11.18

    QIAO Chenglin, SHAN Ganlin, DUAN Xiusheng, et al. Scheduling algorithm of active sensors for tracking task requirement[J]. Systems Engineering and Electronics, 2017, 39(11): 2515–2521. doi: 10.3969/j.issn.1001-506X.2017.11.18
    陈延军, 潘泉, 梁彦, 等. 基于信息量的分布式协同自组织算法[J]. 控制理论与应用, 2011, 28(10): 1391–1398.

    CHEN Yanjun, PAN Quan, LIANG Yan, et al. Decentralized collaborative self-organization algorithm based on information content[J]. Control Theory &Applications, 2011, 28(10): 1391–1398.
    ZHANG Duo, LIU Meiqin, ZHANG Senlin, et al. Mutual-information based weighted fusion for target tracking in underwater wireless sensor networks[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(4): 544–556. doi: 10.1631/FITEE.1601695
    CAO Nianxia, CHOI S, MASAZADE E, et al. Sensor selection for target tracking in wireless sensor networks with uncertainty[J]. IEEE Transactions on Signal Processing, 2016, 64(20): 5191–5204. doi: 10.1109/TSP.2016.2595500
    ZHANG Qiang, LIU Meiqin, and ZHANG Senlin. Node topology effect on target tracking based on UWSNs using quantized measurements[J]. IEEE Transactions on Cybernetics, 2015, 45(10): 2323–2335. doi: 10.1109/TCYB.2014.2371232
    KESHAVARZ-MOHAMMADIYAN A and KHALOOZADEH H. Interacting multiple model and sensor selection algorithms for manoeuvring target tracking in wireless sensor networks with multiplicative noise[J]. International Journal of Systems Science, 2017, 48(5): 899–908. doi: 10.1080/00207721.2016.1177128
    VAISENBERG R, MOTTA A D, MEHROTRA S, et al. Scheduling sensors for monitoring sentient spaces using an approximate POMDP policy[J]. Pervasive and Mobile Computing, 2014, 10: 83–103. doi: 10.1016/j.pmcj.2013.10.014
    胡波, 王祺尧, 冯辉, 等. 一种无线传感器网络中目标跟踪的自适应节点调度算法[J]. 电子与信息学报, 2018, 40(9): 33–41. doi: 10.11999/JEIT171154

    HU Bo, WANG Qiyao, FENG Hui, et al. Adaptive sensor scheduling algorithm for target tracking in wireless sensor networks[J]. Journal of Electronics &Information Technology, 2018, 40(9): 33–41. doi: 10.11999/JEIT171154
    ZHANG Zining and SHAN Ganlin. UTS-based foresight optimization of sensor scheduling for low interception risk tracking[J]. International Journal of Adaptive Control and Signal Processing, 2014, 28(10): 921–931. doi: 10.1002/acs.2417
    万开方, 高晓光, 李波, 等. 基于部分可观察马尔可夫决策过程的多被动传感器组网协同反隐身探测任务规划[J]. 兵工学报, 2015, 36(4): 731–743. doi: 10.3969/j.issn.1000-1093.2015.04.023

    WAN Kaifang, GAO Xiaoguang, LI Bo, et al. Mission planning of passive networked sensors for cooperative anti-stealth detection based on POMDP[J]. Acta Armamentarii, 2015, 36(4): 731–743. doi: 10.3969/j.issn.1000-1093.2015.04.023
    ARASARATNAM I, HAYKIN S, and HURD T R. Cubature Kalman filtering for continuous-discrete systems: Theory and simulations[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 4977–4993. doi: 10.1109/TSP.2010.2056923
    THARMARASA R, KIRUBARAJAN T, HERNANDEZ M L, et al. PCRLB-based multisensor array management for multitarget tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(2): 539–555. doi: 10.1109/taes.2007.4285352
    QIN A K, HUANG V L, and SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 398–417. doi: 10.1109/tevc.2008.927706
    LI Genghui, LIN Qiuzhen, CUI Laizhong, et al. A novel hybrid differential evolution algorithm with modified CoDE and JADE[J]. Applied Soft Computing, 2016, 47: 577–599. doi: 10.1016/j.asoc.2016.06.011
    邱晓红, 胡玉婷, 李渤. 求解多处理器任务调度问题的改进差分进化算法[J]. 控制与决策, 2016, 31(2): 217–224. doi: 10.13195/j.kzyjc.2014.1418

    QIU Xiaohong, HU Yuting, and LI Bo. Multiprocessor task scheduling based on improved differential evolution algorithm[J]. Control and Decision, 2016, 31(2): 217–224. doi: 10.13195/j.kzyjc.2014.1418
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  2794
  • HTML全文浏览量:  1199
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-06
  • 修回日期:  2019-05-26
  • 网络出版日期:  2019-06-03
  • 刊出日期:  2019-09-10

目录

    /

    返回文章
    返回