高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有最小异或数的最大距离可分矩阵的构造

陈少真 张怡帆 任炯炯

陈少真, 张怡帆, 任炯炯. 具有最小异或数的最大距离可分矩阵的构造[J]. 电子与信息学报, 2019, 41(10): 2416-2422. doi: 10.11999/JEIT181113
引用本文: 陈少真, 张怡帆, 任炯炯. 具有最小异或数的最大距离可分矩阵的构造[J]. 电子与信息学报, 2019, 41(10): 2416-2422. doi: 10.11999/JEIT181113
Shaozhen CHEN, Yifan ZHANG, Jiongjiong REN. Constructions of Maximal Distance Separable Matrices with Minimum XOR-counts[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2416-2422. doi: 10.11999/JEIT181113
Citation: Shaozhen CHEN, Yifan ZHANG, Jiongjiong REN. Constructions of Maximal Distance Separable Matrices with Minimum XOR-counts[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2416-2422. doi: 10.11999/JEIT181113

具有最小异或数的最大距离可分矩阵的构造

doi: 10.11999/JEIT181113
基金项目: 信息保障技术重点实验室开放基金(KJ-17-002),国家密码发展基金(MMJJ20180203),数学工程与先进计算国家重点实验室开放基金(2018A03)
详细信息
    作者简介:

    陈少真:女,1967年生,教授,研究方向为密码学信息安全

    张怡帆:女,1993年生,硕士生,研究方向为信息安全

    任炯炯:男,1994年生,博士生,研究方向为信息安全

    通讯作者:

    张怡帆 zhangyifan_fan@163.com

  • 中图分类号: TP309

Constructions of Maximal Distance Separable Matrices with Minimum XOR-counts

Funds: The Foundation of Science and Technology on Information Assurance Laboratory (KJ-17-002), The National Cipher Development Foundation (MMJJ20180203), The State Key Laboratory of Mathematical Engineering and Advanced Computation Open Foundation (2018A03)
  • 摘要: 随着物联网等普适计算的发展,传感器、射频识别(RFID)标签等被广泛使用,这些微型设备的计算能力有限,传统的密码算法难以实现,需要硬件效率高的轻量级分组密码来支撑。最大距离可分(MDS)矩阵扩散性能最好,通常被用于构造分组密码扩散层,异或操作次数(XORs)是用来衡量扩散层硬件应用效率的一个指标。该文利用一种能更准确评估硬件效率的XORs计算方法,结合一种特殊结构的矩阵—Toeplitz矩阵,构造XORs较少效率较高的MDS矩阵。利用Toeplitz矩阵的结构特点,改进矩阵元素的约束条件,降低矩阵搜索的计算复杂度,在有限域${\mathbb{F}_{{2^8}}}$上得到了已知XORs最少的4×4MDS矩阵和6×6MDS矩阵,同时还得到XORs等于已知最优结果的5×5MDS矩阵。该文构造的具有最小XORs的MDS Toeplitz矩阵,对轻量级密码算法的设计具有现实意义。
  • 表  1  本文构造结果与已知结果对比

    矩阵维度不可约多项式矩阵实例${\text{M}}$$C\left( {\text{M}} \right)$文献
    $4 \times 4$${x^8} + {x^6} + {x^5} + x + 1$${\rm{Toep}}\left( {1,1,{x^2},1,{x^{ - 1}},x,{x^2}} \right)$20本文
    $4 \times 4$${x^8} + {x^6} + {x^5} + x + 1$${\rm{Circ}}\left( {1,1,x,{x^{ - 2}}} \right)$24文献[12]
    $4 \times 4$${x^8} + {x^7} + {x^6} + x + 1$${\rm{Toep}}\left( {1,1,x,{x^{ - 1}},{x^{ - 2}},1,{x^{ - 1}}} \right)$27文献[12]
    $4 \times 4$${x^8} + {x^7} + {x^6} + x + 1$${\rm{Left - Circ}}\left( {1,1,x,{x^{ - 2}}} \right)$32文献[14]
    $4 \times 4$${x^8} + {x^7} + {x^6} + x + 1$${\rm{Had}}\left( {1,x,{x^2},{x^{ - 2}}} \right)$52文献[12]
    $5 \times 5$${x^8} + {x^6} + {x^5} + x + 1$${\rm{Toep}}\left( {1,{x^2},1,{x^{ - 1}},{x^{ - 1}},{x^{ - 1}},{x^{ - 1}},1,{x^2}} \right)$40本文
    $5 \times 5$${x^8} + {x^6} + {x^5} + x + 1$${\rm{Circ}}\left( {1,1,x,{x^{ - 2}},x} \right)$40文献[12]
    $5 \times 5$${x^8} + {x^7} + {x^6} + x + 1$${\rm{Left - Circ}}\left( {1,1,x,{x^{ - 2}},x} \right)$55文献[14]
    $6 \times 6$${x^8} + {x^6} + {x^5} + x + 1$${\rm{Toep}}\left( {1,x,x,1,{x^{ - 2}},{x^2},{x^{ - 2}},{x^2},{x^{ - 2}},1,x} \right)$80本文
    $6 \times 6$${x^8} + {x^6} + {x^5} + x + 1$${\rm{Circ}}\left( {1,x,{x^{ - 1}},{x^{ - 2}},1,{x^3}} \right)$84文献[12]
    $6 \times 6$${x^8} + {x^7} + {x^6} + x + 1$${\rm{Left - Circ}}\left( {1,x,{x^{ - 1}},{x^{ - 2}},1,{x^3}} \right)$108文献[14]
    下载: 导出CSV
  • BIHAM E and SHAMIR A. Differential cryptanalysis of DES-like cryptosystems[J]. Journal of Cryptology, 1991, 4(1): 3–72. doi: 10.1007/BF00630563
    MATSUI M. Linear cryptanalysis method for DES cipher[C]. Workshop on the Theory and Application of of Cryptographic Techniques, Lofthus, Norway, 1993: 386–397.
    SHIRAI T, SHIBUTANI K, AKISHITA T, et al. The 128-bit blockcipher CLEFIA (extended abstract)[C]. The 14th International Workshop on Fast Software Encryption, Luxembourg, Luxembourg, 2007: 181–195.
    BOGDANOV A, KNUDSEN L R, LEANDER G, et al. PRESENT: An ultra-lightweight block cipher[C]. The 9th International Workshop on Cryptographic Hardware and Embedded Systems, Vienna, Austria, 2007: 450–466.
    GUO Jian, PEYRIN T, POSCHMANN A, et al. The LED block cipher[C]. The 13th International Workshop on Cryptographic Hardware and Embedded Systems, Nara, Japan, 2011: 326–341.
    YANG Gangqiang, ZHU Bo, SUDER V, et al. The SIMECK family of lightweight block ciphers[C]. The 17th International Workshop on Cryptographic Hardware and Embedded Systems, Saint-Malo, France, 2015: 307–329.
    SIM S M, KHOO K, OGGIER F, et al. Lightweight MDS involution matrices[C]. The 22nd International Workshop on Fast Software Encryption, Istanbul, Turkey, 2015: 471–493.
    LIU Meicheng and SIM S M. Lightweight MDS generalized circulant matrices[C]. The 23rd International Conference on Fast Software Encryption, Bochum, Germany, 2016: 101–120.
    LI Yongqiang and WANG Mingsheng. On the construction of lightweight circulant involutory MDS matrices[C]. The 23rd International Conference on Fast Software Encryption, Bochum, Germany, 2016: 121–139.
    SARKAR S and SYED H. Lightweight diffusion layer: Importance of Toeplitz matrices[J]. IACR Transactions on Symmetric Cryptology, 2016, 2016(1): 95–113. doi: 10.13154/tosc.v2016.i1.95-113
    JEAN J, PEYRIN T, SIM S M, et al. Optimizing implementations of lightweight building blocks[J]. IACR Transactions on Symmetric Cryptology, 2017, 2017(4): 130–168. doi: 10.13154/tosc.v2017.i4.130-168
    BEIERLE C, KRANZ T, and LEANDER G. Lightweight multiplication in GF(2n) with applications to MDS matrices[C]. The 36th Annual International Cryptology Conference, Santa Barbara, USA, 2016: 625–653.
    SARKAR S and SYED H. Analysis of Toeplitz MDS matrices[C]. The 22nd Australasian Conference on Information Security and Privacy, Auckland, New Zealand, 2017: 3–18.
    KHOO K, PEYRIN T, POSCHMANN A Y, et al. FOAM: Searching for hardware-optimal SPN structures and components with a fair comparison[C]. The 16th International Workshop on Cryptographic Hardware and Embedded Systems, Busan, South Korea, 2014: 433–450.
    JUNOD P and VAUDENAY S. Perfect diffusion primitives for block ciphers[C]. The 11th International Workshop on Selected Areas in Cryptography, Waterloo, Canada, 2004: 84–99.
  • 加载中
表(1)
计量
  • 文章访问数:  2613
  • HTML全文浏览量:  1195
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-03
  • 修回日期:  2019-05-31
  • 网络出版日期:  2019-06-12
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回