高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进深度卷积神经网络的纸币识别研究

盖杉 鲍中运

盖杉, 鲍中运. 基于改进深度卷积神经网络的纸币识别研究[J]. 电子与信息学报, 2019, 41(8): 1992-2000. doi: 10.11999/JEIT181097
引用本文: 盖杉, 鲍中运. 基于改进深度卷积神经网络的纸币识别研究[J]. 电子与信息学报, 2019, 41(8): 1992-2000. doi: 10.11999/JEIT181097
Shan GAI, Zhongyun BAO. Banknote Recognition Research Based on Improved Deep Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1992-2000. doi: 10.11999/JEIT181097
Citation: Shan GAI, Zhongyun BAO. Banknote Recognition Research Based on Improved Deep Convolutional Neural Network[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1992-2000. doi: 10.11999/JEIT181097

基于改进深度卷积神经网络的纸币识别研究

doi: 10.11999/JEIT181097
基金项目: 国家自然科学基金(61563037),江西省杰出青年计划(20171BCB23057)
详细信息
    作者简介:

    盖杉:男,1980年生,副教授,硕士生导师,研究方向为计算机视觉、图像处理、深度学习

    鲍中运:男,1990年生,硕士生,研究方向为计算机视觉、图像处理、深度学习

    通讯作者:

    盖杉 gaishan@nchu.edu.cn

  • 中图分类号: TP391.41; TP181

Banknote Recognition Research Based on Improved Deep Convolutional Neural Network

Funds: The National Natural Science Foundation of China(61563037), The Outstanding Youth Scheme of Jiangxi Province (20171BCB23057)
  • 摘要: 针对如何提高纸币识别率的问题,该文提出一种改进深度卷积神经网络(DCNN)的纸币识别算法。该算法首先通过融合迁移学习、带泄露整流(Leaky ReLU)函数、批量归一化(BN)和多层次残差单元构造深度卷积层,对输入的不同尺寸纸币进行稳定而快速的特征提取与学习;然后采用改进的多层次空间金字塔池化算法对提取的纸币特征实现固定大小的输出表示;最后通过网络全连接层和softmax层实现纸币图像分类。实验结果表明,该算法在分类性能、泛化能力与稳定性上明显优于常用的纸币分类算法;同时该算法也能够满足纸币清分系统的实时性要求。
  • 图  1  算法结构示意图

    图  2  纸币图像预处理(RMB-100)

    图  3  纸币图像预处理(USD-100)

    图  4  纸币图像预处理(EUR-500)

    图  5  多层次残差单元结构图

    图  6  多层次空间金字塔池化算法结构框架

    图  7  纸币图像的4个面向

    表  1  纸币数据库

    纸币种类纸币面值纸币分类纸币样本数训练样本数测试样本数
    人民币(RMB)5, 10, 20, 50, 10020460003600010000
    美元(USD)1, 2, 10, 20, 50, 10024380002500013000
    欧元(EUR)5, 10, 20, 50, 100, 200, 5002835000260009000
    下载: 导出CSV

    表  2  数据库DB1平均识别率(%)

    人民币网格特征[3]自由掩模[2]VGGNet19[10]PReLU-net18]BN-inception[16]ResNet-34B[13]本文算法
    10074.2576.4491.5291.4592.3894.1696.68
    5074.0274.7590.8391.7692.1195.9897.80
    2075.2376.8892.3491.5693.6494.8895.03
    1080.1283.3494.0694.7695.6796.8696.97
    583.2480.5793.1693.2795.5395.6697.82
    下载: 导出CSV

    表  3  数据库DB2平均识别率(%)

    美元网格特征[3]自由掩模[2]VGGNet19[10]PReLU-net[18]BN-inception[16]ResNet-34B[13]本文算法
    10070.1372.2489.2691.3393.2594.4695.67
    5073.1472.2891.3591.4992.9894.2994.96
    2074.5677.8290.2392.1493.0595.1195.89
    1076.2175.3491.2593.3493.6794.2895.15
    278.1180.1292.1392.8693.5895.6796.75
    181.2380.0291.2490.3694.2796.1697.98
    下载: 导出CSV

    表  4  数据库DB3平均识别率(%)

    欧元网格特征[3]自由掩模[2]VGGNet19[10]PReLU-net[18]BN-inception[16]ResNet-34B[13]本文算法
    50081.1284.2393.2592.9194.5694.9396.98
    20081.6582.3293.2494.1394.6895.1298.20
    10085.4686.9494.1294.6795.2396.1197.75
    5079.2583.2493.2093.1294.3595, 2996.79
    2083.2484.5294.2595.2895.6496.3398.76
    1085.3387.1294.2494.7694.1997.2097.88
    584.2083.5294.1693.2695.1295.7897.89
    下载: 导出CSV

    表  5  污损纸币实际测试识别率(%)

    污损样本网格特征[3]自由掩模[2]VGGNet19[10]PReLU-net[18]BN-inception[16]ResNet-34B[13]本文算法
    DB1(16100)78.6582.4992.4593.1894.3795.0697.58
    DB2(15960)75.4279.1688.2491.0792.5394.8496.75
    DB3(10500)80.2883.1791.5293.6595.1896.7897.29
    下载: 导出CSV

    表  6  不同识别算法运行时间(s)

    自由掩模[2]网格特征[3]VGGNet19[10]PReLU-Net[18]BN-inception[16]ResNet-34B[13]本文算法
    0.980.851.971.721.581.241.06
    下载: 导出CSV
  • KATO N, SUZUKI M, OMACHI S, et al. A handwritten character recognition system using directional element feature and asymmetric mahalanobis distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(3): 258–262. doi: 10.1109/34.754617
    TAKEDA F and OMATU S. High speed paper currency recognition by neural networks[J]. IEEE Transactions on Neural Networks, 1995, 6(1): 73–77. doi: 10.1109/72.363448
    刘家锋, 刘松波, 唐降龙. 一种实时纸币识别方法的研究[J]. 计算机研究与发展, 2003, 40(7): 1057–1061.

    LIU Jiafeng, LIU Songbo, and TANG Xianglong. An algorithm of real-time paper currency recongnition[J]. Journal of Computer Research and Development, 2003, 40(7): 1057–1061.
    CHOI E, LEE J, and YOON J. Feature extraction for bank note classification using wavelet transform[C]. The IEEE 18th International Conference on Pattern Recognition (ICPR), Hong Kong, China, 2006: 934–937. doi: 10.1109/ICPR.2006.553.
    GAI Shan, YANG Guowei, and WAN Minghua. Employing quaternion wavelet transform for banknote classification[J]. Neurocomputing, 2013, 118: 171–178. doi: 10.1016/j.neucom.2013.02.029
    JIN Ye, SONG Ling, TANG Xianglong, et al. A hierarchical approach for banknote image processing using homogeneity and FFD model[J]. IEEE Signal Processing Letters, 2008, 15: 425–428. doi: 10.1109/LSP.2008.921470
    吴震东, 王雅妮, 章坚武. 基于深度学习的污损指纹识别研究[J]. 电子与信息学报, 2017, 39(7): 1585–1591. doi: 10.11999/JEIT161121

    WU Zhendong, WANG Yani, and ZHANG Jianwu. Fouling and damaged fingerprint recognition based on deep learning[J]. Journal of Electronics &Information Technology, 2017, 39(7): 1585–1591. doi: 10.11999/JEIT161121
    樊养余, 李祖贺, 王凤琴, 等. 基于跨领域卷积稀疏自动编码器的抽象图像情绪性分类[J]. 电子与信息学报, 2017, 39(1): 167–175. doi: 10.11999/JEIT160241

    FAN Yangyu, LI Zuhe, WANG Fengqin, et al. Affective abstract image classification based on convolutional sparse autoencoders across different domains[J]. Journal of Electronics &Information Technology, 2017, 39(1): 167–175. doi: 10.11999/JEIT160241
    KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Nevada, USA, 2012: 1097–1105.
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. International Conference on Learning Representations (ICLR), Banff, Canada, 2015: 168–175.
    SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 1–9. doi: 10.1109/CVPR.2015.7298594.
    SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 2818–2826. doi: 10.1109/CVPR.2016.308.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. doi: 10.1109/TPAMI.2015.2389824
    PENG Peixi, TIAN Yonghong, XIANG Tao, et al. Joint semantic and latent attribute modeling for cross-class transfer learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(7): 1625–1638. doi: 10.1109/TPAMI.2017.2723882
    IOFFE S and SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]. Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 2015: 448–456.
    KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. Proceedings of the 3rd International Conference on Learning Representations (ICLR), San Diego, USA, 2015: 1–8.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification[C]. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 2015: 1026–1034. doi: 10.1109/ICCV.2015.123.
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  4201
  • HTML全文浏览量:  1268
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-28
  • 修回日期:  2019-03-27
  • 网络出版日期:  2019-04-21
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回