GONG Shu, XIONG Hailiang, PENG Meixuan, et al. Joint DOD and DOA estimation for bistatic multiple-input multiple-output radar target discrimination based on improved unitary ESPRIT method[J]. IET Communications, 2018, 12(12): 1397–1405. doi: 10.1049/iet-com.2017.1086
|
LI Jianfeng, LI Dong, JIANG Defu, et al. Extended-aperture unitary root MUSIC-based DOA estimation for coprime array[J]. IEEE Communications Letters, 2018, 22(4): 752–755. doi: 10.1109/LCOMM.2018.2802491
|
ZHANG Dong, ZHANG Yongshun, ZHENG Guimei, et al. Improved DOA estimation algorithm for co-prime linear arrays using root-MUSIC algorithm[J]. Electronics Letters, 2017, 53(18): 1277–1279. doi: 10.1049/el.2017.2292
|
MONZINGO R A, HAUPT R L, and MILLER T W. Optimum Array Processing[M]. Introduction to Adaptive Arrays. 2nd ed. Raleigh, NC, SciTech Publishing, 2011: 81–149.
|
LIU Lutao and LIU Huan. Joint estimation of DOA and TDOA of multiple reflections in mobile communications[J]. IEEE Access, 2016, 4: 3815–3823. doi: 10.1109/ACCESS.2016.2584088
|
WANG Xianpeng, WANG Luyun, LI Xiumei, et al. An efficient sparse representation algorithm for DOA estimation in MIMO radar system[C]. Proceedings of 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications, Edinburgh, UK, 2016: 1–4.
|
SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830
|
HUANG Qinghua, ZHANG Lin, and FANG Yong. Improving decoupled spherical harmonics ESPRIT using structured least squares[J]. IEEE Access, 2018, 6: 37956–37964. doi: 10.1109/ACCESS.2018.2839260
|
宋虎, 蒋迺倜, 刘溶, 等. 基于稀疏采样阵列优化的APG-MUSIC算法[J]. 电子与信息学报, 2018, 40(6): 1390–1396. doi: 10.11999/JEIT170807SONG Hu, JIANG Naiti, LIU Rong, et al. APG-MUSIC algorithm based on sparse sampling array optimization[J]. Journal of Electronics &Information Technology, 2018, 40(6): 1390–1396. doi: 10.11999/JEIT170807
|
CHINTAGUNTA S and PONNUSAM P. 2D-DOD and 2D-DOA estimation using the electromagnetic vector sensors[J]. Signal Processing, 2018, 147: 163–172. doi: 10.1016/j.sigpro.2018.01.025
|
YAO Bobin, ZHANG Weile, and WU Qisheng. Weighted subspace fitting for two-dimension DOA estimation in massive MIMO systems[J]. IEEE Access, 2017, 5: 14020–14027. doi: 10.1109/ACCESS.2017.2731379
|
DIAB W M G and ELKAMCHOUCHI H M. A novel approach for 2D-DOA estimation using cross-shaped arrays[C]. Proceedings of 2008 IEEE Antennas and Propagation Society International Symposium, San Diego, USA, 2008: 1–4.
|
DZIELSKI J E, BURKHARDT R C, and KOTANCHEK M E. Comments on " modified MUSIC algorithm for estimating DOA of signals”[J]. Signal Processing, 1996, 55(2): 253–254. doi: 10.1016/S0165-1684(96)00179-X
|
方庆园, 韩勇, 金铭, 等. 基于噪声子空间特征值重构的DOA估计算法[J]. 电子与信息学报, 2014, 36(12): 2876–2881. doi: 10.3724/SP.J.1146.2013.02014FANG Qingyuan, HAN Yong, JIN Ming, et al. DOA estimation based on eigenvalue reconstruction of noise subspace[J]. Journal of Electronics &Information Technology, 2014, 36(12): 2876–2881. doi: 10.3724/SP.J.1146.2013.02014
|
LI Jianfeng, ZHANG Xiaofei, and CHEN Han. Improved two-dimensional DOA estimation algorithm for two-parallel uniform linear arrays using propagator method[J]. Signal Processing, 2012, 92(12): 3032–3038. doi: 10.1016/j.sigpro.2012.06.010
|
HUA Y, SARKAR T K, and WEINER D D. An L-shaped array for estimating 2-D directions of wave arrival[J]. IEEE Transactions on Antennas and Propagation, 1991, 39(2): 143–146. doi: 10.1109/8.68174
|
路鸣, 保铮. 用低维子空间法分辨空间相干源的统计分析[J]. 电子学报, 1990, 18(1): 79–85.LU Ming and BAO Zheng. Statistical analysis of low dimensional subspace techniques for the resolution of coherent sources[J]. Acta Electronica Sinica, 1990, 18(1): 79–85.
|