高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自动秩估计的黎曼优化矩阵补全算法及其在图像补全中的应用

刘静 刘涵 黄开宇 苏立玉

刘静, 刘涵, 黄开宇, 苏立玉. 基于自动秩估计的黎曼优化矩阵补全算法及其在图像补全中的应用[J]. 电子与信息学报, 2019, 41(11): 2787-2794. doi: 10.11999/JEIT181076
引用本文: 刘静, 刘涵, 黄开宇, 苏立玉. 基于自动秩估计的黎曼优化矩阵补全算法及其在图像补全中的应用[J]. 电子与信息学报, 2019, 41(11): 2787-2794. doi: 10.11999/JEIT181076
Jing LIU, Han LIU, Kaiyu HUANG, Liyu SU. Automatic Rank Estimation Based Riemannian Optimization Matrix Completion Algorithm and Application to Image Completion[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2787-2794. doi: 10.11999/JEIT181076
Citation: Jing LIU, Han LIU, Kaiyu HUANG, Liyu SU. Automatic Rank Estimation Based Riemannian Optimization Matrix Completion Algorithm and Application to Image Completion[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2787-2794. doi: 10.11999/JEIT181076

基于自动秩估计的黎曼优化矩阵补全算法及其在图像补全中的应用

doi: 10.11999/JEIT181076
基金项目: 国家自然科学基金(61573276)
详细信息
    作者简介:

    刘静:女,1975年生,教授,博士生导师,从事压缩感知、图像融合、雷达信号处理方向的研究

    刘涵:女,1991年生,硕士生,研究方向为压缩感知、图像处理、矩阵补全

    黄开宇:男,1992年生,博士生,研究方向为压缩感知、信号处理、信号与图像处理

    苏立玉:男,1996年生,硕士生,研究方向为压缩感知、图像处理、张量补全

    通讯作者:

    刘静 elelj20080730@gmail.com

  • 中图分类号: TP391.41

Automatic Rank Estimation Based Riemannian Optimization Matrix Completion Algorithm and Application to Image Completion

Funds: The National Natural Science Foundation of China (61573276)
  • 摘要: 矩阵补全(MC)作为压缩感知(CS)的推广,已广泛应用于不同领域。近年来,基于黎曼优化的MC算法因重构精度高、计算速度快的特点,引起了广泛关注。针对基于黎曼优化的MC算法需假设原矩阵秩固定已知,且随机选择迭代起点的特点,该文提出一种基于自动秩估计的黎曼优化MC算法。该算法通过优化包含秩正则项的目标函数,迭代获取秩估计值和预重构矩阵。在估计所得秩对应的矩阵空间上以预重构矩阵为迭代起点,利用基于黎曼流形的共轭梯度法进行矩阵补全,从而提高重构精度。实验结果表明,与几种经典的图像补全方法相比,该文算法图像重构精度显著提高。
  • 图  1  基于自动秩估计的黎曼优化矩阵补全算法的图像补全

    图  2  低秩矩阵构建示意图

    图  3  黎曼流形上的共轭梯度法

    图  4  30%采样率下各算法图像补全结果

    表  1  自动秩估计算法伪代码

     算法1 自动秩估计算法
     输入:${\text{A}} = {{\text{A}}_p} \in {\mathbb {R}^{m \times n}}$,索引矩阵${\text{Ω}}$,正则项系数$\mu $, $\alpha $,初始秩$\hat k$,最大迭代次数$K$,容错度${\tau _2}$。
     初始化:执行奇异值分解${\text{A}}{\rm{ = }}{\text{U}}{\text{W}}{{\text{V}}^{\rm{T}}}$,将${\text{U}}$的第$r$列单位化记为${{\text{u}}_r}$,将${\text{V}}$的第$r$行单位化记为${{\text{v}}_r}$, ${\text{w}} = \left\{ {{w_r}} \right\}_{r = 1}^{\min \left( {m,n} \right)}$为${\text{W}}$中奇异值组成的     向量。令${\text{Z}} = {\text{0}}$, ${{\text{P}}_{{\Omega ^c}}}\left( {\text{A}} \right) = {\text{0}}$。
     输出:${\text{Z}} $, $k$。
     (1) for $i = 1,2,·\!·\!·,K$ do:
     (2) ${{\text{A}}_r} = {\text{A}}$;
     (3) 更新${{\text{u}}_r}$, ${{\text{v}}_r}$, ${w_r}$: for $r = 1,2, ·\!·\!· ,\hat k$ do:
              若${w_r} \ne 0$,根据式(8)、式(9)和式(11)依次更新${{\text{u}}_r}$, ${{\text{v}}_r}$, ${w_r}$,
              ${{\text{A}}_r} = {{\text{A}}_r} - {w_r}{{\text{u}}_r}{\text{v}}_r^{\rm{T}}$,
              end;
     (4) 更新${\text{A}}$:更新${\text{Z}} = {\text{A}} - {{\text{A}}_r}$,令${ {\text{P} }_{ {\varOmega ^c} } }\left( {\text{A} } \right) = { {\text{P} }_{ {\varOmega ^c} } }\left( {\text{Z} } \right)$;
     (5) 更新$k$:for $k = 1,2, ·\!·\!· ,\min\left( {m,n} \right)$ do:
         计算$f\left( k \right) = {\rm{ } }\mu \left| { { {\text{w} }_r} } \right|_{r = 1}^k + 0.5\parallel {\text{A} } - \sum\limits_{r = 1}^k { {w_r}{ {\text{u} }_r}{ {\text{v} }_r}^{\rm{T} } } \parallel _{\rm F}^2 + \alpha k$,若$f\left( k \right) < f\left( {k + 1} \right)$,则结束循环,
         end;
     (6) $\hat k = k$;
     (7) 若${{\parallel {{\text{P}}_\Omega }\left( {{\text{A}} - {\text{Z}}} \right){\parallel _{\rm{F}}}} /{\parallel {{\text{P}}_\Omega }\left( {\text{A}} \right){\parallel _{\rm{F}}}}} < {\tau _2}$或${{\parallel {{\text{A}}^{i + 1}} - {{\text{A}}^i}{\parallel _{\rm{F}}}} / {\parallel {{\text{A}}^{i + 1}}{\parallel _{\rm{F}}}}} < {\tau _2}$,则结束循环;
     (8) end。
    下载: 导出CSV

    表  2  基于自动秩估计的黎曼优化矩阵补全算法伪代码

     算法2 基于自动秩估计的黎曼优化矩阵补全算法
     输入:${{\text{X}} _1}{\rm{ = }}Z \in {{\cal M}_k}$(${\text{Z}} $和$k$源于算法1),容错度${\tau _1}$,切向量${{\text{η}} _0}{\rm{ = }}0$。
     输出:${{\text{X}}^ * }$。
     (1) for $i = 1,2, ·\!·\!· ,K$ do:
     (2) 梯度${\xi _i}: = {\rm{gradf}}\left( {{{\text{X}}_i}} \right)$;             % 计算黎曼梯度
     (3) 若$\parallel {\xi _i}\parallel \le {\tau _1}$,则停止迭代,令${{\text{X}}^ * }{\rm{ = }}{{\text{X}}_i}$,否则转(4);% 终止条件
     (4) 共轭方向${{\text{η}} _i}: = - {\xi _i} + {\beta _i}{{\cal T}_{{{\text{X}} _{i - 1}} \to {{\text{X}}_i}}}\left( {{{\text{η}}_{i - 1}}} \right)$;      % 计算共轭方向
     (5) 步长${t_i} = {{\rm{argmin}}_t}f\left( {{{\text{X}}_i} + t{{\text{η}} _i}} \right)$;          % 计算步长
     (6) 执行Armijo回溯以找到满足$f\left( {{{\text{X}}_i}} \right) - f\left( {{R_{{{\text{X}}_i}}}\left( {0.{5^m}{t_i}{{\text{η}} _i}} \right)} \right) \ge - 0.0001 \times 0.{5^m}{t_i}\left\langle {{\xi _i},{{\text{η}} _i}} \right\rangle $且m≥0的最小整数,计算${X_{i + 1}}: = {R_{{{\text{X}}_i}}}\left( {0.{5^m}{t_i}{{\text{η}} _i}} \right)$;                           % 收缩算子
     (7) end。
    下载: 导出CSV

    表  3  基于各算法的补全后图像PSNR(dB)/SSIM指标评价

    采样率(%)图像补全算法
    本文算法SVPOptSpaceSVTIALM
    10Barbara25.1371/0.101827.1138/0.074928.4540/0.270326.4330/0.181727.9684/0.2217
    House25.0207/0.073727.0100/0.084528.8611/0.380526.0756/0.212227.3161/0.0319
    20Barbara29.5855/0.618729.4788/0.370529.0277/0.350927.7929/0.363829.0097/0.3175
    House32.1346/0.775030.5881/0.468129.2989/0.409628.0950/0.456929.1008/0.0667
    30Barbara31.8223/0.777530.5821/0.553029.7224/0.413829.0192/0.519329.6337/0.4010
    House34.3279/0.843432.6125/0.685829.8818/0.443730.2986/0.647229.9081/0.4560
    40Barbara33.1805/0.805431.3704/0.624930.4532/0.492230.2063/0.647130.2152/0.4592
    House36.9926/0.917533.4685/0.744930.5393/0.468732.2618/0.771830.6276/0.4546
    50Barbara34.3090/0.854532.3230/0.704531.1457/0.534931.6388/0.760731.0285/0.5060
    House37.9729/0.934234.4193/0.790931.8817/0.585434.2940/0.857531.3316/0.4965
    60Barbara35.5808/0.893233.3609/0.761232.2731/0.595533.4085/0.855231.9375/0.5660
    House39.5723/0.950435.5242/0.829733.5629/0.709936.5579/0.915032.3391/0.4992
    70Barbara37.1206/0.927734.6884/0.812433.4690/0.645335.7766/0.919133.0595/0.6449
    House41.0744/0.962236.8819/0.869034.4479/0.739539.3028/0.952433.4229/0.5724
    80Barbara39.0801/0.952936.4704/0.866535.3219/0.747938.8081/0.956534.7671/0.6462
    House43.1665/0.972838.6710/0.904237.2815/0.828841.8076/0.923435.2485/0.6317
    90Barbara42.3685/0.969939.3773/0.921338.4127/0.865340.6578/0.935738.0598/0.7796
    House46.1068/0.981041.9691/0.944240.3322/0.894342.0364/0.970738.1441/0.7449
    下载: 导出CSV
  • 臧芳. 一种利用低秩矩阵填充技术恢复气象数据的方法[J]. 计算机应用与软件, 2017, 34(9): 322–327. doi: 10.3969/j.issn.1000-386x.2017.09.063

    ZANG Fang. Method of restoring meteorological data using low-rank matrix filling technique[J]. Computer Applications and Software, 2017, 34(9): 322–327. doi: 10.3969/j.issn.1000-386x.2017.09.063
    杨国亮, 鲁海荣, 丰义琴, 等. 基于非局部矩阵填充的文物修复技术研究[J]. 计算机应用与软件, 2016, 33(11): 126–129. doi: 10.3969/j.issn.1000-386x.2016.11.030

    YANG Guoliang, LU Hairong, FENG Yiqin, et al. On cultural relic images restoration technology based on non-local matrix completion[J]. Computer Applications and Software, 2016, 33(11): 126–129. doi: 10.3969/j.issn.1000-386x.2016.11.030
    陈秋实, 杨强, 董英凝, 等. 基于矩阵填充的合成宽带高频雷达非网格目标分辨技术研究[J]. 电子与信息学报, 2017, 39(12): 2874–2880. doi: 10.11999/JEIT170449

    CHEN Qiushi, YANG Qiang, DONG Yingning, et al. Off-the-grid targets resolution of synthetic bandwidth high frequency radar based on matrix completion[J]. Journal of Electronics &Information Technology, 2017, 39(12): 2874–2880. doi: 10.11999/JEIT170449
    CAI T T and ZHANG Anru. Sparse representation of a polytope and recovery of sparse signals and low-rank matrices[J]. IEEE Transactions on Information Theory, 2014, 60(1): 122–132. doi: 10.1109/TIT.2013.2288639
    CAI Jianfeng, CANDES E J, and SHEN Zuowei. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4): 1956–1982. doi: 10.1137/080738970
    LIN Zhouchen, CHEN Minming, and MA Yi. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[J]. arXiv preprint arXiv: 1009.5055, 2010.
    VANDEREYCKEN B. Low-rank matrix completion by riemannian optimization[J]. SIAM Journal on Optimization, 2013, 23(2): 1214–1236. doi: 10.1137/110845768
    MEKA R, JAIN P, and DHILLON I S. Guaranteed rank minimization via singular value projection[C]. Proceedings of the Neural Information Processing Systems Conference, Vancouver, Canada, 2010: 937–945.
    KESHAVAN R H and OH S. A gradient descent algorithm on the grassman manifold for matrix completion[J]. arXiv preprint arXiv: 0910.5260, 2009.
    SHI Qiquan, LU Haiping, and CHEUNG Y. Rank-one matrix completion with automatic rank estimation via L1-norm regularization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(10): 4744–4757. doi: 10.1109/TNNLS.2017.2766160
    陈蕾, 陈松灿. 矩阵补全模型及其算法研究综述[J]. 软件学报, 2017, 28(6): 1547–1564. doi: 10.13328/j.cnki.jos.005260

    CHEN Lei and CHEN Songcan. Survey on matrix completion models and algorithms[J]. Journal of Software, 2017, 28(6): 1547–1564. doi: 10.13328/j.cnki.jos.005260
    CANDÈS E J and RECHT B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 2009, 9(6): 717–772. doi: 10.1007/s10208-009-9045-5
    LI Wei, ZHAO Lei, LIN Zhijie, et al. Non-local image inpainting using low‐rank matrix completion[J]. Computer Graphics Forum, 2015, 34(6): 111–122. doi: 10.1111/cgf.12521
    LIU Ping, LEWIS J, and RHEE T. Low-rank matrix completion to reconstruct incomplete rendering images[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(8): 2353–2365. doi: 10.1109/TVCG.2017.2722414
    DONG Bin, MAO Yu, OSHER S, et al. Fast linearized Bregman iteration for compressive sensing and sparse denoising[J]. Communications in Mathematical Sciences, 2010, 8(1): 93–111. doi: 10.4310/CMS.2010.v8.n1.a6
    LIU Yuanyuan, SHANG Fanhua, WEI Fan, et al. Generalized higher-order orthogonal iteration for tensor decomposition and completion[C]. Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 1763–1771.
    HORE A and ZIOU D. Image quality metrics: PSNR vs. SSIM[C]. Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey, 2010: 2366–2369.
    ÖZIÇ M Ü and ÖZŞEN S. A new model to determine asymmetry coefficients on MR images using PSNR and SSIM[C]. Proceedings of 2017 International Artificial Intelligence and Data Processing Symposium, Malatya, Turkey, 2017: 1–6.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  3771
  • HTML全文浏览量:  1906
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-23
  • 修回日期:  2019-05-07
  • 网络出版日期:  2019-05-20
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回