高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分类误差一致性准则的自适应知识迁移

梁爽 杭文龙 冯伟 刘学军

梁爽, 杭文龙, 冯伟, 刘学军. 基于分类误差一致性准则的自适应知识迁移[J]. 电子与信息学报, 2019, 41(11): 2736-2743. doi: 10.11999/JEIT181054
引用本文: 梁爽, 杭文龙, 冯伟, 刘学军. 基于分类误差一致性准则的自适应知识迁移[J]. 电子与信息学报, 2019, 41(11): 2736-2743. doi: 10.11999/JEIT181054
Shuang LIANG, Wenlong HANG, Wei FENG, Xuejun LIU. Adaptive Knowledge Transfer Based on Classification-error Consensus Regularization[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2736-2743. doi: 10.11999/JEIT181054
Citation: Shuang LIANG, Wenlong HANG, Wei FENG, Xuejun LIU. Adaptive Knowledge Transfer Based on Classification-error Consensus Regularization[J]. Journal of Electronics & Information Technology, 2019, 41(11): 2736-2743. doi: 10.11999/JEIT181054

基于分类误差一致性准则的自适应知识迁移

doi: 10.11999/JEIT181054
基金项目: 国家自然科学基金(61802177),江苏省高校自然科学研究面上项目(18KJB520020),南京邮电大学引进人才科研启动基金(NY219034),江苏省重点研发计划(BE2015697)
详细信息
    作者简介:

    梁爽:女,1987年生,讲师,研究方向为机器学习、信号处理

    杭文龙:男,1988年生,讲师,研究方向为机器学习、模式识别

    冯伟:男,1995年生,硕士生,研究方向机器学习、模式识别

    刘学军:男,1970年生,教授,硕士生导师,研究方向为数据挖掘、大数据分布式处理

    通讯作者:

    杭文龙 wlhang@njtech.edu.cn

  • 中图分类号: TP181

Adaptive Knowledge Transfer Based on Classification-error Consensus Regularization

Funds: The National Nature Science Foundation of China (61802177), The Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (18KJB520020), NUPTSF (NY219034), Key Research and Development Program of Jiangsu Province (BE2015697)
  • 摘要: 目前大多数迁移学习方法在利用源域数据辅助目标域数据建模时,通常假设源域中的数据均与目标域数据相关。然而在实际应用中,源域中的数据并非都与目标域数据的相关程度一致,若基于上述假设往往会导致负迁移效应。为此,该文首先提出分类误差一致性准则(CCR),对源域与目标域分类误差的概率分布积分平方误差进行最小化度量。此外,该文提出一种基于CCR的自适应知识迁移学习方法(CATL),该方法可以快速地从源域中自动确定出与目标域相关的数据及其权重,以辅助目标域模型的构建,使其能在提高知识迁移效率的同时缓解负迁移学习效应。在真实图像以及文本数据集上的实验结果验证了CATL方法的优势。
  • 图  1  6种对比算法在文本数据集上的分类精度

    表  1  图像数据集USPS及MNIST中源域数据与目标域数据的详细设置

    任务源域数据目标域数据
    正类负类正类负类
    1USPS7USPS9MNIST7MNIST9
    2USPS4USPS9MNIST4MNIST9
    3USPS0USPS6MNIST0MNIST6
    下载: 导出CSV

    表  2  文本数据集20-Newsgroups中源域数据与目标域数据的详细设置

    任务源域数据目标域数据
    正类负类正类负类
    1comp.graphicsrec.autoscomp.os.ms-windows.miscrec.motorcycles
    2comp.sys.ibm.pc.hardwarerec.sport.baseballcomp.sys.mac.hardwarerec.sport.hokey
    3sci.crypttalk.politics.gunssci.electronicstalk.politics.mideast
    4sci.medtalk.politics.miscsci.spacetalk.religion.misc
    5rec.autostalk.politics.gunsrec.motorcyclestalk.politics.mideast
    6rec.sport.baseballtalk.politics.miscrec.sport.hokeytalk.religion.misc
    下载: 导出CSV

    表  3  各种算法在图像任务上的分类精度

    任务已标注样本LSSVMCDSVMASVMTrAdaBoostSTMPRIFCATL2
    140.52870.56110.59130.57990.60180.62450.6359
    60.55200.58000.60940.61330.62980.63840.6477
    80.58970.61120.62660.60070.63190.64210.6528
    100.60300.63920.65020.62130.64870.65390.6672
    120.63810.64610.63830.65880.66430.67530.6791
    140.65410.65870.67540.66820.69010.69820.7014
    240.53540.57430.59980.58870.59830.62230.6133
    60.58970.59920.62930.59030.64260.64780.6520
    80.62760.63870.64920.66900.68030.68930.6927
    100.65080.66410.68430.69050.70670.70290.7168
    120.68920.66980.69880.71230.72340.73260.7387
    140.70980.71560.72070.70760.72660.73910.7421
    340.65780.69030.70260.68730.72350.74720.7492
    60.70130.74450.75290.73540.75410.76320.7726
    80.74520.76950.77210.74550.7618077260.7829
    100.77620.78030.77890.78360.79280.79180.8193
    120.79230.79440.80340.79940.82880.81720.8301
    140.82340.82130.81780.81450.83970.82630.8452
    下载: 导出CSV
  • DENG Zhaohong, JIANG Yizhang, CHOI K S, et al. Knowledge-leverage-based TSK fuzzy system modeling[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(8): 1200–1212. doi: 10.1109/TNNLS.2013.2253617
    DAI Wenyuan, YANG Qiang, XUE Guirong, et al. Boosting for transfer learning[C]. The 24th International Conference on Machine Learning, Corvalis, USA, 2007: 193–200.
    JIANG Yizhang, DENG Zhaohong, CHUNG F L, et al. Recognition of epileptic EEG signals using a novel multiview TSK fuzzy system[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(1): 3–20. doi: 10.1109/TFUZZ.2016.2637405
    ZHUANG Fuzhen, LUO Ping, DU Changying, et al. Triplex transfer learning: Exploiting both shared and distinct concepts for text classification[J]. IEEE Transactions on Cybernetics, 2014, 44(7): 1191–1203. doi: 10.1109/TCYB.2013.2281451
    PAN S J, NI Xiaochuan, SUN Jiantao, et al. Cross-domain sentiment classification via spectral feature alignment[C]. Proceedings of the 19th International Conference on World Wide Web, Raleigh, USA, 2010: 751–760.
    ZANG Shaofei, CHENG Yuhu, WANG Xuesong, et al. Semi-supervised transfer discriminant analysis based on cross-domain mean constraint[J]. Artificial Intelligence Review, 2018, 49(4): 581–595. doi: 10.1007/s10462-016-9533-3
    WANG Guanjin, ZHANG Guangquan, CHOI K S, et al. Deep additive least squares support vector machines for classification with model transfer[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(7): 1527–1540. doi: 10.1109/TSMC.2017.2759090
    YANG Jun, YAN Rong, and HAUPTMANN A G. Adapting SVM classifiers to data with shifted distributions[C]. The Seventh IEEE International Conference on Data Mining Workshops, Omaha, USA, 2007: 69–76.
    JIANG Yizhang, DENG Zhaohong, CHUNG F L, et al. Realizing two-view TSK fuzzy classification system by using collaborative learning[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47(1): 145–160. doi: 10.1109/TSMC.2016.2577558
    CHU Wensheng, DE LA TORRE F, and COHN J F. Selective transfer machine for personalized facial action unit detection[C]. 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 3515–3522.
    GRETTON A, SMOLA A, HUANG Jiayuan, et al. Covariate Shift by Kernel Mean Matching[M]. QUIÑONERO-CANDELA J, SUGIYAMA M, SCHWAIGHOFER A, et al. Dataset Shift in Machine Learning. Cambridge, USA: MIT Press, 2009: 131–160.
    CHENG Yuhu, WANG Xuesong, and CAO Ge. Multi-source tri-training transfer learning[J]. IEICE Transactions on Information and Systems, 2014, E97-D(6): 1668–1672. doi: 10.1587/transinf.e97.d.1668
    WANG Yunyun, ZHAI Jie, LI Yun, et al. Transfer learning with partial related " instance-feature” knowledge[J]. Neurocomputing, 2018, 310: 115–124. doi: 10.1016/j.neucom.2018.05.029
    CHEN Minmin, XU Zhixiang, WEINBERGER K Q, et al. Marginalized denoising autoencoders for domain adaptation[C]. The 29th International Conference on Machine Learning, Edinburgh, Scotland, 2012: 1627–1634.
    ZHOU J T, PAN S J, TSANG I W, et al. Hybrid heterogeneous transfer learning through deep learning[C]. The 28th AAAI Conference on Artificial Intelligence, Québec City, Canada, 2014: 2213–2219.
    GLOROT X, BORDES A, and BENGIO Y. Domain adaptation for large-scale sentiment classification: A deep learning approach[C]. The 28th International Conference on Machine Learning, Bellevue, Washington, USA, 2011: 513–520.
    LONG Mingsheng, WANG Jianmin, CAO Yue, et al. Deep learning of transferable representation for scalable domain adaptation[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(8): 2027–2040. doi: 10.1109/TKDE.2016.2554549
    PARZEN E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33(3): 1065–1076. doi: 10.1214/aoms/1177704472
    DENG Zhaohong, CHUNG F L, and WANG Shitong. FRSDE: Fast reduced set density estimator using minimal enclosing ball approximation[J]. Pattern Recognition, 2008, 41(4): 1363–1372. doi: 10.1016/j.patcog.2007.09.013
    TOMMASI T, ORABONA F, and CAPUTO B. Learning categories from few examples with multi model knowledge transfer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(5): 928–941. doi: 10.1109/TPAMI.2013.197
    LACOSTE-JULIEN S, SCHMIDT M, and BACH F. A simpler approach to obtaining an O(1/t) convergence rate for the projected stochastic subgradient method[J]. arXiv:1212.2002, 2012.
    LONG Mingsheng, WANG Jianmin, DING Guiguang, et al. Transfer learning with graph co-regularization[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(7): 1805–1818. doi: 10.1109/TKDE.2013.97
    SUYKENS J A K and VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293–300. doi: 10.1023/a:1018628609742
    BART E and ULLMAN S. Cross-generalization: Learning novel classes from a single example by feature replacement[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005: 672–679.
    GU Xiaoqing, CHUNG F L, and WANG Shitong. Bayesian Takagi-Sugeno-Kang fuzzy classifier[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(6): 1655–1671. doi: 10.1109/TFUZZ.2016.2617377
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  2553
  • HTML全文浏览量:  1385
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-20
  • 修回日期:  2019-04-30
  • 网络出版日期:  2019-05-16
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回