Multi-threshold Image Segmentation of 2D Otsu Based on Improved Adaptive Differential Evolution Algorithm
-
摘要: 针对常规最大类间方差法在多阈值图像分割中存在的运算量大、计算时间长、分割精度较低等问题,该文提出一种基于改进的自适应差分演化(JADE)算法的2维Otsu多阈值分割法。首先,为增强初始化种群的质量、提升控制参数的适应性,将混沌映射机制融入到JADE算法中;进而,通过该改进算法求解2维 Otsu 多阈值图像的最佳分割阈值;最终,将该算法与差分进化(DE), JADE,改进正弦参数自适应的差分进化(LSHADE-cnEpSin)以及增强的适应性微分变换差分进化(EFADE) 4种算法的2维Otsu多阈值图像分割进行比较。实验结果表明,与其它4种算法相比,基于改进JADE算法的2维Otsu多阈值图像分割在分割速度以及精度上均有较明显的改善。
-
关键词:
- 图像分割 /
- 最大类间方差法 /
- 混沌映射 /
- 改进的自适应差分演化算法
Abstract: The multi-threshold image segmentation of the classical 2D maximal between-cluster variance method has deficiencies such as large computation, long calculation time, low segmentation precision and so on. A multi-threshold segmentation of 2D Otsu based on improved Adaptive Differential Evolution (JADE) algorithm is proposed. Firstly, in order to enhance the quality of the initialized population and improve the adaptability of the control parameters, the chaotic mapping mechanism is integrated into the JADE algorithm. Furthermore, the optimal segmentation threshold of 2D Otsu multi-threshold image is solved by improved JADE algorithm. Finally, the algorithm is compared with multi-threshold image segmentation method of 2D Otsu based on Differential Evolution (DE), JADE, Improved Differential Evolution with Adaptive Sinusoidal Parameters (LSHADE-cnEpSin) and Enhanced Adaptive Differential Transformation Differential Evolution (EFADE) algorithm. The experimental results show that compared with the other four algorithms, the multi-threshold image segmentation of 2D Otsu based on the improved JADE algorithm has a significant improvement in terms of segmentation speed and accuracy. -
表 1 算法1:混沌映射更新参数uF和uCR的伪代码
(1) If $\;\alpha < \beta $ (2) ${u_{\rm CR}} = {u_1} \cdot {u_{\rm CR}} \cdot (1 - {u_{\rm CR}})$ (3) ${u_F} = {u_2} \cdot {u_F} \cdot (1 - {u_F})$ (4) Else (5) ${u_{\rm CR}} = (1 - c) \cdot {u_{\rm CR}} + c \cdot {{\rm mean}_{\rm A}}({S_{\rm CR}})$ (6) ${u_F} = (1 - c) \cdot {u_F} + c \cdot {{\rm mean}_{\rm L}}({S_F})$ (7) End If 表 2 PSNR、运算时间以及迭代次数的对比
算法 Lena (512$ \times $512) Finger (256$ \times $256) Pepper (512$ \times $512) 2阈值 3阈值 4阈值 2阈值 3阈值 4阈值 2阈值 3阈值 4阈值 DE算法 PSNR(dB) 10.58 13.88 15.64 12.02 12.45 14.14 11.68 15.84 16.54 收敛时间(s) 7.79 7.82 7.84 3.64 3.58 3.73 8.49 8.34 8.82 迭代次数 72 58 64 62 57 66 45 43 47 JADE算法 PSNR(dB) 11.79 14.25 16.02 12.35 13.02 14.26 11.71 16.32 16.71 收敛时间(s) 0.85 0.83 0.77 0.51 0.53 0.57 0.81 0.80 0.83 迭代次数 52 54 50 59 62 58 60 56 58 LSHADE-cnEpSin算法 PSNR(dB) 13.70 14.98 15.67 12.07 12.77 14.46 12.23 16.19 17.02 收敛时间(s) 0.79 0.75 0.82 0.45 0.48 0.46 0.78 0.82 0.78 迭代次数 34 35 33 65 45 60 50 48 46 EFADE算法 PSNR(dB) 12.89 15.05 15.45 13.23 12.61 13.24 12.11 15.57 16.67 收敛时间(s) 0.99 1.12 1.10 0.77 0.76 0.83 1.24 1.31 1.29 迭代次数 45 42 46 50 48 52 40 38 41 CJADE算法 PSNR(dB) 13.93 15.64 16.25 13.65 14.67 14.89 12.56 16.57 17.12 收敛时间(s) 0.64 0.66 0.65 0.45 0.44 0.48 0.61 0.64 0.66 迭代次数 38 35 38 41 40 44 40 36 38 表 3 阈值和距离测度值的对比
算法 Lena (512$ \times $512) Finger (256$ \times $256) Pepper (512$ \times $512) 2阈值 3阈值 4阈值 2阈值 3阈值 4阈值 2阈值 3阈值 4阈值 DE算法 距离测度 4645.67 4698.86 4747.74 1223.45 1247.75 1296.25 5340.87 5407.71 5513.28 阈值 (68,71)
(117,153)(30, 32)
(86,138)
(193,199)(88,95)
(119,123)
(151,153)
(202,207)(39,53)
(155,165)(108,124)
(147,152)
(168,180)(23,38)
(102,133)
(150,157)
(169,170)(70,70)
(117,161)(84, 85)
(142,162)
(201,203)(70,77)
(111,112)
(126,129)
(129,179)JADE算法 距离测度 4842.77 4912.21 4924.13 1315.43 1320.35 1326.23 5798.46 5822.86 5892.86 阈值 (89,149)
(193,195)(77,79)
(114,149)
(196,196)(70,77)
(109,137)
(149,154)
(182,183)(138,166)
(175,175)(10,67)
(143,164)
(174,175)(40,52)
(50,110)
(156,156)
(171,172)(88,91)
(127,169)(98, 115)
(140,140)
(178,178)(96,101)
(114,133)
(149,150)
(152,171)LSHADE-cnEpSin算法 距离测度 4862.49 4905.97 4995.04 1256.65 1268.79 1289.32 5797.85 5899.34 5909.58 阈值 (88,149)
(194,195)(79,79)
(115,145)
(177,177)(76,76)
(119,141)
(158,160)
(197,197)(88,102)
(183,183)(64,82)
(148,164)
(183,184)(36,39)
(42,98)
(145,155)
(164,169)(78,79)
(126,177)(84, 85)
(127,159)
(194,194)(76,77)
(121,122)
(126,157)
(192,193)EFADE算法 距离测度 4848.87 4951.82 4973.23 1257.29 1267.42 1324.41 5788.61 5885.72 5892.13 阈值 (89,148)
(186,186)(76,80)
(130,153)
(205,205)(79,86)
(112,137)
(139,151)
(201,203)(44,51)
(142,176)(30,42)
(140,162)
(172,174)(41,46)
(68,83)
(141,167)
(172,173)(86,90)
(120,176)(73, 74)
(121,159)
(193,194)(53,55)
(121,123)
(154,154)
(180,182)CJADE算法 距离测度 4863.53 4977.34 4999.63 1327.84 1329.17 1331.28 5799.13 5898.73 5912.18 阈值 (87,149)
(194,194)(77,78)
(115,148)
(194,195)(78,80)
(117,139)
(156,156)
(199,199)(143,166)
(173,173)(25, 62)
(142,166)
(174,175)(40,45)
(70,98)
(156,158)
(162,162)(84,85)
(124,173)(77, 78)
(123,164)
(195,195)(54,55)
(99,100)
(129,160)
(199,199) -
刘健庄, 栗文青. 灰度图象的二维Otsu自动阈值分割法[J]. 自动化学报, 1993, 19(1): 101–105. doi: 10.16383/j.aas.1993.01.015LIU Jianzhuang and LI Wenqing. The automatic thresholding of gray-level pictures via two-dimensional otsu method[J]. Acta Automatica Sinica, 1993, 19(1): 101–105. doi: 10.16383/j.aas.1993.01.015 申铉京, 刘翔, 陈海鹏. 基于多阈值Otsu准则的阈值分割快速计算[J]. 电子与信息学报, 2017, 39(1): 144–149. doi: 10.11999/JEIT160248SHEN Xuanjing, LIU Xiang, and CHEN Haipeng. Fast computation of threshold based on multi-threshold Otsu criterion[J]. Journal of Electronics &Information Technology, 2017, 39(1): 144–149. doi: 10.11999/JEIT160248 HU Min, LI Mei, and WANG Ronggui. Application of an improved Otsu algorithm in image segmentation[J]. Journal of Electronic Measurement and Instrument, 2010, 24(5): 443–449. doi: 10.3724/SP.J.1187.2010.00443 ZHANG Jingqiao and SANDERSON A C. JADE: Adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945–958. doi: 10.1109/TEVC.2009.2014613 TANABE R and FUKUNAGA A. Success-history based parameter adaptation for differential evolution[C]. 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 2013: 71–78. TANABE R and FUKUNAGA A S. Improving the search performance of SHADE using linear population size reduction[C]. 2014 IEEE Congress on Evolutionary Computation, Beijing, China, 2014: 1658–1665. AWAD N H, ALI M Z, SUGANTHAN P N, et al. An ensemble sinusoidal parameter adaptation incorporated with L-SHADE for solving CEC2014 benchmark problems[C]. 2016 IEEE Congress on Evolutionary Computation, Vancouver, Canada, 2016: 2958–2965. AWAD N H, ALI M Z, and SUGANTHAN P N. Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems[C]. 2017 IEEE Congress on Evolutionary Computation, San Sebastian, Spain, 2017: 372–379. MOHAMED A W and SUGANTHAN P N. Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation[J]. Soft Computing, 2018, 22(10): 3215–3235. doi: 10.1007/s00500-017-2777-2 STHITPATTANAPONGSA P and SRINARK T. A two-stage Otsu’S thresholding based method on a 2D histogram[C]. IEEE 7th International Conference on Intelligent Computer Communication and Processing, Cluj-Napoca, Romania, 2011: 345–348. 张春美, 陈杰, 辛斌. 参数适应性分布式差分进化算法[J]. 控制与决策, 2014, 29(4): 701–706. doi: 10.13195/j.kzyjc.2013.0080ZHANG Chunmei, CHEN Jie, and XIN Bin. Distributed differential evolution algorithm with adaptive parameters[J]. Control and Decision, 2014, 29(4): 701–706. doi: 10.13195/j.kzyjc.2013.0080 王李进, 钟一文, 尹义龙. 带外部存档的正交交叉布谷鸟搜索算法[J]. 计算机研究与发展, 2015, 52(11): 2496–2507. doi: 10.7544/issn1000-1239.2015.20148042WANG Lijin, ZHONG Yiwen, and YIN Yilong. Orthogonal crossover cuckoo search algorithm with external archive[J]. Journal of Computer Research and Development, 2015, 52(11): 2496–2507. doi: 10.7544/issn1000-1239.2015.20148042 RERE L M R, FANANY M I, and MURNI A. Adaptive DE based on chaotic sequences and random adjustment for image contrast enhancement[C]. 2014 International Conference of Advanced Informatics: Concept, Theory and Application, Bandung, Indonesia, 2015: 220–225. doi: 10.1109/ICAICTA.2014.7005944. 陈志刚, 梁涤青, 邓小鸿, 等. Logistic混沌映射性能分析与改进[J]. 电子与信息学报, 2016, 38(6): 1547–1551. doi: 10.11999/JEIT151039CHEN Zhigang, LIANG Diqing, DENG Xiaohong, et al. Performance analysis and improvement of logistic chaotic mapping[J]. Journal of Electronics &Information Technology, 2016, 38(6): 1547–1551. doi: 10.11999/JEIT151039 陈如清. 采用新型粒子群算法的电力电子装置在线故障诊断方法[J]. 中国电机工程学报, 2008, 28(24): 70–74. doi: 10.3321/j.issn:0258-8013.2008.24.012CHEN Ruqing. A novel PSO based on-line fault diagnosis approach for power electronic system[J]. Proceedings of the CSEE, 2008, 28(24): 70–74. doi: 10.3321/j.issn:0258-8013.2008.24.012 SHA Chunshi, HOU Jian, and CUI Hongxia. A robust 2D Otsu’s thresholding method in image segmentation[J]. Journal of Visual Communication and Image Representation, 2016, 41: 339–351. doi: 10.1016/j.jvcir.2016.10.013 HUYNH-THU Q and GHANBARI M. The accuracy of PSNR in predicting video quality for different video scenes and frame rates[J]. Telecommunication Systems, 2012, 49(1): 35–48. doi: 10.1007/s11235-010-9351-x