Construction of a Class of Linear Codes with Four-weight and Six-weight
-
摘要: 低重线性码在结合方案、认证码以及秘密共享方案等方面有着极其重要的作用,因而低重线性码的设计一直是线性码的重要研究方向。该文通过选取恰当的定义集,构造了有限域
${F_p}$ (p为奇素数)上的一类四重和六重线性码,利用高斯和确定了码的重量分布,并编写Magma程序进行了验证。结果表明,构造的码中存在关于Singleton界的几乎最佳码。Abstract: Due to the wide applications in association schemes, authentication codes and secret sharing schemes etc., construction of the linear codes with a few weights is an important research topic. A class of linear codes with four-weight and six-weight over finite field${F_p}$ (p is an odd prime) is constructed by a proper selection of the defining set. The explicit weight distribution is obtained using Gauss sums, and some examples from Magma program to illustrate the validity of the conclusions are provided. The results show that these codes include almost optimal codes with respect to Singleton bound.-
Key words:
- Linear codes /
- Authentication codes /
- Weight distribution /
- Gauss sums
-
表 1 m为偶数时码CD的重量分布
重量 频数 $0$ $1$ $(p - 1)({p^{m - 2}} + {p^{ - 1}}{G_m})/2$ $p - 1$ $(p - 1)({p^{m - 2}} - {p^{m - 3}})/2$ ${p^{m - 2}} - 1$ $(p - 1)({p^{m - 2}} - {p^{m - 3}} + {p^{ - 2}}{G_m})/2$ $(p - 1)({p^{m - 2}} + {p^{ - 1}}{G_m})$ $(p - 1)({p^{m - 2}} - {p^{m - 3}} + {p^{ - 1}}{G_m})/2$ $(p - 1)({p^{m - 2}} - 1)$ $(p - 1)({p^{m - 2}} - {p^{m - 3}} + {p^{ - 1}}{G_m} + {p^{ - 3}}{G_m}{G^2})/2$ ${A_5}$ $(p - 1)({p^{m - 2}} - {p^{m - 3}} + {p^{ - 1}}{G_m} - {p^{ - 3}}{G_m}{G^2})/2$ ${A_6}$ 表 2 m为奇数时码CD的重量分布
重量 频数 $0$ $1$ $\begin{align}{\rm{}}& (p - 1)({p^{m - 2} } - \bar \eta ( - m)\\{\rm{}}& \cdot {p^{ - 2} }{G_m}G)/2\end{align}$ $p - 1$ $(p - 1)({p^{m - 2}} - {p^{m - 3}})/2$ $(p - 1)({p^{m - 2} } - (p - 2)\bar \eta ( - m)\; \\ \cdot{p^{ - 2} }{G_m}G)/2 - 1$ $(p - 1)({p^{m - 2}} - {p^{m - 3}} \\ - \bar \eta ( - m){p^{ - 2}}{G_m}G)/2$ $(p - 1)(2{p^{m - 2} }\; + \bar \eta ( - m)\;\\ \cdot {p^{ - 2} }(p - 2){G_m}G - 1)$ $(p - 1)({p^{m - 2}} - {p^{m - 3}} \\ - 2\bar \eta ( - m){p^{ - 2}}{G_m}G)/2$ $(p - 1)(p - 2)({p^{m - 2} }\; - \bar \eta ( - m)\;\\ \cdot {p^{ - 2} }{G_m}G)/2$ -
CALDERBANK A R and GOETHALS J M. Three-weight codes and association schemes[J]. Philips Journal of Research, 1984, 39(4/5): 143–152. DING Cunsheng, HELLESETH T, KLOVE T, et al. A generic construction of Cartesian authentication codes[J]. IEEE Transactions on Information Theory, 2007, 53(6): 2229–2235. doi: 10.1109/tit.2007.896872 CALDERBANK A R and KANTOR W M. The geometry of two-weight codes[J]. Bulletin of the London Mathematical Society, 1986, 18(2): 97–122. doi: 10.1112/blms/18.2.97 YUAN Jin and DING Cunsheng. Secret sharing schemes from three classes of linear codes[J]. IEEE Transactions on Information Theory, 2006, 52(1): 206–212. doi: 10.1109/TIT.2005.860412 BAUMERT L D and MCELIECE R J. Weights of irreducible cyclic codes[J]. Information and Control, 1972, 20(2): 158–175. doi: 10.1016/S0019-9958(72)90354-3 DING Cunsheng. Linear codes from some 2-designs[J]. IEEE Transactions on Information Theory, 2015, 61(6): 3265–3275. doi: 10.1109/TIT.2015.2420118 DING Kelan and DING Cunsheng. Binary linear codes with three weights[J]. IEEE Communications Letters, 2014, 18(11): 1879–1882. doi: 10.1109/LCOMM.2014.2361516 DING Cunsheng, LI Chunlei, LI Nian, et al. Three-weight cyclic codes and their weight distributions[J]. Discrete Mathematics, 2016, 339(2): 415–427. doi: 10.1016/j.disc.2015.09.001 XIANG Can, TANG Chunming, and FENG Keqin. A class of linear codes with a few weights[J]. Cryptography and Communications, 2017, 9(1): 93–116. doi: 10.1007/s12095-016-0200-y DING Cunsheng and NIEDERREITER H. Cyclotomic linear codes of order 3[J]. IEEE Transactions on Information Theory, 2007, 53(6): 2274–2277. doi: 10.1109/TIT.2007.896886 LI Fei, WANG Qiuyan, and LIN Dongdai. A class of three-weight and five-weight linear codes[J]. Discrete Applied Mathematics, 2018, 241: 25–38. doi: 10.1016/j.dam.2016.11.005 LI Chengju, YUE Qin, and FU Fangwei. Complete weight enumerators of some cyclic codes[J]. Designs, Codes and Cryptography, 2016, 80(2): 295–315. doi: 10.1007/s10623-015-0091-5 YANG Shudi, YAO Zhengan, and ZHAO Changan. A class of three-weight linear codes and their complete weight enumerators[J]. Cryptography and Communications, 2017, 9(1): 133–149. doi: 10.1007/s12095-016-0187-4 LIDL R and NIEDERREITER H. Finite Fields[M]. Reading, Mass: Addison-Wesley, 1983, 54–240. 杜小妮, 吕红霞, 王蓉, 等. 两类四重线性码的构造[J]. 西北师范大学学报: 自然科学版, 2018, 54(6): 1–4.DU Xiaoni, LÜ Hongxia, WANG Rong, et al. A construction of two classes of linear codes with four-weights[J]. Journal of Northwest Normal University:Natural Science, 2018, 54(6): 1–4. MACWILLIAMS F J and SLOANE N J A. The Theory of Error-Correcting Codes[M]. Amsterdam: North-Holland Publishing Co., 1977, 126–144.
表(2)
计量
- 文章访问数: 2817
- HTML全文浏览量: 1214
- PDF下载量: 61
- 被引次数: 0