高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类四重和六重线性码的构造

杜小妮 吕红霞 王蓉

杜小妮, 吕红霞, 王蓉. 一类四重和六重线性码的构造[J]. 电子与信息学报, 2019, 41(12): 2995-2999. doi: 10.11999/JEIT180939
引用本文: 杜小妮, 吕红霞, 王蓉. 一类四重和六重线性码的构造[J]. 电子与信息学报, 2019, 41(12): 2995-2999. doi: 10.11999/JEIT180939
Xiaoni DU, Hongxia LÜ, Rong WANG. Construction of a Class of Linear Codes with Four-weight and Six-weight[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2995-2999. doi: 10.11999/JEIT180939
Citation: Xiaoni DU, Hongxia LÜ, Rong WANG. Construction of a Class of Linear Codes with Four-weight and Six-weight[J]. Journal of Electronics & Information Technology, 2019, 41(12): 2995-2999. doi: 10.11999/JEIT180939

一类四重和六重线性码的构造

doi: 10.11999/JEIT180939
基金项目: 国家自然科学基金(61772022, 61562077),上海市自然科学基金(16ZR1411200)
详细信息
    作者简介:

    杜小妮:女,1972年生,教授,博士生导师,研究方向为密码学与信息安全

    吕红霞:女,1993年生,硕士生,研究方向为密码学与信息安全

    王蓉:女,1993年生,硕士生,研究方向为密码学与信息安全

    通讯作者:

    杜小妮 ymldxn@126.com

  • 中图分类号: TP391

Construction of a Class of Linear Codes with Four-weight and Six-weight

Funds: The National Natural Science Foundtion of China (61772022, 61562077), The Shanghai Natural Science Foundation (16ZR1411200)
  • 摘要: 低重线性码在结合方案、认证码以及秘密共享方案等方面有着极其重要的作用,因而低重线性码的设计一直是线性码的重要研究方向。该文通过选取恰当的定义集,构造了有限域${F_p}$(p为奇素数)上的一类四重和六重线性码,利用高斯和确定了码的重量分布,并编写Magma程序进行了验证。结果表明,构造的码中存在关于Singleton界的几乎最佳码。
  • 表  1  m为偶数时码CD的重量分布

    重量频数
    $0$$1$
    $(p - 1)({p^{m - 2}} + {p^{ - 1}}{G_m})/2$$p - 1$
    $(p - 1)({p^{m - 2}} - {p^{m - 3}})/2$${p^{m - 2}} - 1$
    $(p - 1)({p^{m - 2}} - {p^{m - 3}} + {p^{ - 2}}{G_m})/2$$(p - 1)({p^{m - 2}} + {p^{ - 1}}{G_m})$
    $(p - 1)({p^{m - 2}} - {p^{m - 3}} + {p^{ - 1}}{G_m})/2$$(p - 1)({p^{m - 2}} - 1)$
    $(p - 1)({p^{m - 2}} - {p^{m - 3}} + {p^{ - 1}}{G_m} + {p^{ - 3}}{G_m}{G^2})/2$${A_5}$
    $(p - 1)({p^{m - 2}} - {p^{m - 3}} + {p^{ - 1}}{G_m} - {p^{ - 3}}{G_m}{G^2})/2$${A_6}$
    下载: 导出CSV

    表  2  m为奇数时码CD的重量分布

    重量频数
    $0$$1$
    $\begin{align}{\rm{}}& (p - 1)({p^{m - 2} } - \bar \eta ( - m)\\{\rm{}}& \cdot {p^{ - 2} }{G_m}G)/2\end{align}$$p - 1$
    $(p - 1)({p^{m - 2}} - {p^{m - 3}})/2$$(p - 1)({p^{m - 2} } - (p - 2)\bar \eta ( - m)\; \\ \cdot{p^{ - 2} }{G_m}G)/2 - 1$
    $(p - 1)({p^{m - 2}} - {p^{m - 3}} \\ - \bar \eta ( - m){p^{ - 2}}{G_m}G)/2$$(p - 1)(2{p^{m - 2} }\; + \bar \eta ( - m)\;\\ \cdot {p^{ - 2} }(p - 2){G_m}G - 1)$
    $(p - 1)({p^{m - 2}} - {p^{m - 3}} \\ - 2\bar \eta ( - m){p^{ - 2}}{G_m}G)/2$$(p - 1)(p - 2)({p^{m - 2} }\; - \bar \eta ( - m)\;\\ \cdot {p^{ - 2} }{G_m}G)/2$
    下载: 导出CSV
  • CALDERBANK A R and GOETHALS J M. Three-weight codes and association schemes[J]. Philips Journal of Research, 1984, 39(4/5): 143–152.
    DING Cunsheng, HELLESETH T, KLOVE T, et al. A generic construction of Cartesian authentication codes[J]. IEEE Transactions on Information Theory, 2007, 53(6): 2229–2235. doi: 10.1109/tit.2007.896872
    CALDERBANK A R and KANTOR W M. The geometry of two-weight codes[J]. Bulletin of the London Mathematical Society, 1986, 18(2): 97–122. doi: 10.1112/blms/18.2.97
    YUAN Jin and DING Cunsheng. Secret sharing schemes from three classes of linear codes[J]. IEEE Transactions on Information Theory, 2006, 52(1): 206–212. doi: 10.1109/TIT.2005.860412
    BAUMERT L D and MCELIECE R J. Weights of irreducible cyclic codes[J]. Information and Control, 1972, 20(2): 158–175. doi: 10.1016/S0019-9958(72)90354-3
    DING Cunsheng. Linear codes from some 2-designs[J]. IEEE Transactions on Information Theory, 2015, 61(6): 3265–3275. doi: 10.1109/TIT.2015.2420118
    DING Kelan and DING Cunsheng. Binary linear codes with three weights[J]. IEEE Communications Letters, 2014, 18(11): 1879–1882. doi: 10.1109/LCOMM.2014.2361516
    DING Cunsheng, LI Chunlei, LI Nian, et al. Three-weight cyclic codes and their weight distributions[J]. Discrete Mathematics, 2016, 339(2): 415–427. doi: 10.1016/j.disc.2015.09.001
    XIANG Can, TANG Chunming, and FENG Keqin. A class of linear codes with a few weights[J]. Cryptography and Communications, 2017, 9(1): 93–116. doi: 10.1007/s12095-016-0200-y
    DING Cunsheng and NIEDERREITER H. Cyclotomic linear codes of order 3[J]. IEEE Transactions on Information Theory, 2007, 53(6): 2274–2277. doi: 10.1109/TIT.2007.896886
    LI Fei, WANG Qiuyan, and LIN Dongdai. A class of three-weight and five-weight linear codes[J]. Discrete Applied Mathematics, 2018, 241: 25–38. doi: 10.1016/j.dam.2016.11.005
    LI Chengju, YUE Qin, and FU Fangwei. Complete weight enumerators of some cyclic codes[J]. Designs, Codes and Cryptography, 2016, 80(2): 295–315. doi: 10.1007/s10623-015-0091-5
    YANG Shudi, YAO Zhengan, and ZHAO Changan. A class of three-weight linear codes and their complete weight enumerators[J]. Cryptography and Communications, 2017, 9(1): 133–149. doi: 10.1007/s12095-016-0187-4
    LIDL R and NIEDERREITER H. Finite Fields[M]. Reading, Mass: Addison-Wesley, 1983, 54–240.
    杜小妮, 吕红霞, 王蓉, 等. 两类四重线性码的构造[J]. 西北师范大学学报: 自然科学版, 2018, 54(6): 1–4.

    DU Xiaoni, LÜ Hongxia, WANG Rong, et al. A construction of two classes of linear codes with four-weights[J]. Journal of Northwest Normal University:Natural Science, 2018, 54(6): 1–4.
    MACWILLIAMS F J and SLOANE N J A. The Theory of Error-Correcting Codes[M]. Amsterdam: North-Holland Publishing Co., 1977, 126–144.
  • 加载中
表(2)
计量
  • 文章访问数:  2817
  • HTML全文浏览量:  1214
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-09
  • 修回日期:  2019-03-18
  • 网络出版日期:  2019-04-25
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回