高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卷积神经网络在雷达自动目标识别中的研究进展

贺丰收 何友 刘准钆 徐从安

贺丰收, 何友, 刘准钆, 徐从安. 卷积神经网络在雷达自动目标识别中的研究进展[J]. 电子与信息学报, 2020, 42(1): 119-131. doi: 10.11999/JEIT180899
引用本文: 贺丰收, 何友, 刘准钆, 徐从安. 卷积神经网络在雷达自动目标识别中的研究进展[J]. 电子与信息学报, 2020, 42(1): 119-131. doi: 10.11999/JEIT180899
Fengshou HE, You HE, Zhunga LIU, Cong’an XU. Research and Development on Applications of Convolutional Neural Networks of Radar Automatic Target Recognition[J]. Journal of Electronics & Information Technology, 2020, 42(1): 119-131. doi: 10.11999/JEIT180899
Citation: Fengshou HE, You HE, Zhunga LIU, Cong’an XU. Research and Development on Applications of Convolutional Neural Networks of Radar Automatic Target Recognition[J]. Journal of Electronics & Information Technology, 2020, 42(1): 119-131. doi: 10.11999/JEIT180899

卷积神经网络在雷达自动目标识别中的研究进展

doi: 10.11999/JEIT180899
基金项目: 国家自然科学基金(61672431, 61790550, 91538201)
详细信息
    作者简介:

    贺丰收:男,1979年生,高级工程师,博士生,研究方向为雷达数据处理,多源信息融合,深度神经网络等

    何友:男,1956年生,中国工程院院士,博士生导师,研究方向为多源信息融合,信号检测,雷达数据处理等

    刘准钆:男,1984年生,教授,研究方向为多源信息融合,证据推理,模式识别

    徐从安:男,1987年生,博士,讲师,研究方向为多目标跟踪,信息融合等

    通讯作者:

    贺丰收 hefengshou1979@163.com

  • 中图分类号: TN953

Research and Development on Applications of Convolutional Neural Networks of Radar Automatic Target Recognition

Funds: The National Natural Science Foundation of China (61672431, 61790550, 91538201)
  • 摘要:

    自动目标识别(ATR)是雷达信息处理领域的重要研究方向。由于卷积神经网络(CNN)无需进行特征工程,图像分类性能优越,因此在雷达自动目标识别领域研究中受到越来越多的关注。该文综合论述了CNN在雷达图像处理中的应用进展。首先介绍了雷达自动目标识别相关知识,包括雷达图像的特性,并指出了传统的雷达自动目标识别方法局限性。给出了CNN卷积神经网络原理、组成和在计算机视觉领域的发展历程。然后着重介绍了CNN在雷达自动目标识别中的研究现状,其中详细介绍了合成孔径雷达(SAR)图像目标的检测与识别方法。接下来对雷达自动目标识别面临的挑战进行了深入分析。最后对CNN新理论、新模型,以及雷达新成像技术和未来复杂环境下的应用进行了展望。

  • 图  1  LeNet-5网络的结构示意图

    图  2  ILSVRC历年的冠军成绩

    图  3  深度网络和深度卷积网络在雷达图像领域发表的文章数示意图

    表  1  光学图像和雷达图像的差异

    特性光学图像雷达图像
    波段可见光,红外微波段
    信号形式多波段灰度信息单波段复信号
    成像原理能量聚焦积累相位相干积累
    尺度特性和成像距离有关目标尺寸不随成像距离变化
    成像方向俯仰角-方位角距离向-方位角
    下载: 导出CSV

    表  2  部分典型网络的参数总结

    LeNet5AlexNetOverfeatfastVGG16GoogleNetV1ResNet50
    输入图像尺寸28×28227×227231×231224×224224×224224×224
    卷积层数量255135753
    全连接层数量233311
    卷积核大小53,5,113,5,1131,3,5,71,3,7
    步长11,41,411,21,2
    权值参数数量60 k61 M146 M138 M7 M25.5 M
    乘积运算数量341 k724 M2.8 G15.5 G1.43 G3.9 G
    Top-5误差16.414.27.46.75.25
    下载: 导出CSV

    表  3  MSTAR数据集的目标类型和样本数量

    数据集2S1BMP2BRD M2BTR 60BTR 70D7T62T72ZIL 131ZSU 234
    训练集299233298256233299299298299299
    测试集274587274195196274196274274274
    下载: 导出CSV

    表  4  常见数据增强技术

    名称主要方法
    旋转变换将图像旋转一定角度
    翻转变换沿水平或垂直方向翻转图像
    缩放变换放大或缩小图像
    平移变换在图像平面上对图像进行平移
    尺度变换对图像按照置顶的尺度因子进行缩放,改变图像内容的大小或模糊程度
    反射变换对称变换,包括轴反射变换和镜面反射变换
    噪声扰动在图像内增加噪声,如指数噪声,高斯噪声,瑞利噪声,椒盐噪声等
    下载: 导出CSV

    表  5  基于CNN的目标检测方法对比

    方法提出场合核心思想MAP(%)主要特点
    候选窗方法RCNNECCV 2014选择搜索方法生成候选窗66.0训练分多个阶段,每个候选窗都需要用CNN处理,占用磁盘空间大,处理效率低
    Fast RCNNICCV2015加入了SPPnet70.0选择搜索方法生成候选窗,耗时长,无法满足实时应用
    Faster RCNNNIPS2015提出了RPN网络,融合区域生成与CNN73.2性能与速度较好的折中,但区域生成方式计算量依然很大,不能实时处理
    R-FCNNIPS2016RPN+位置敏感的预测层+ROI polling+投票决策层76.6速度比Faster RCNN快,且精度相当
    回归方法YOLOCVPR2016将检测问题变为回归问题57.9没有区域生成步骤,网格回归的定位性能较弱,检测精度不高。
    SSDECCV2016YOLO+Proposal+多尺度73.9速度非常快,性能也不错
    下载: 导出CSV

    表  6  CNN在雷达图像识别应用进展的思想与方法概要

    提升类型主要思想引用文献和方法概要说明
    快速算法快速寻优预训练文献[47]:带动量小批量随机梯度下降,快速寻找全局最优点
    文献[45]:预训练较浅卷积网络,实现无监督快速检测。
    文献[53]:用大样本数据对卷积网络进行预训练
    用其他结构取代全连接层文献[40,47]:低自由度稀疏连通卷积结构
    文献[39]:SVM代替FC
    文献[53]:用超限学习机替换FC
    抽取特征再训练文献[54]:先抽取特征再训练的两步快速训练方法
    提升算法提高网络的泛化能力文献[47]:Dropout和早期停止
    文献[52]:将卷积层与2维PCA方法结合
    代价函数改进文献[46]:代价函数中引入类别可分性度量提高类别区分能力
    含噪样本训练文献[49]:基于概率转移模型增强含噪标记下分类模型鲁棒性。
    扩展算法迁移学习文献[26,53,55]:大样本预训练,迁移学习加快训练速度
    CAD模型仿真文献[56]: 采用CAD模型目标仿真解决SAR真实数据有限问题
    文献[57]: CAD模型生成不同方位和俯仰角度的HRRP图像
    预处理提升信息的利用率文献[41]:形态学成分分析预处理提升性能
    文献[58]:采用去噪自编码器预训练
    小样本深度训练网络文献[42,44]:卷积高速公路单元在小样本条件下训练深度网络
    文献[59]:无监督和有监督训练结合,应对标签数据有限情况
    下载: 导出CSV
  • KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. Imagenet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
    CHENG Gong, HAN Junwei, and LU Xiaoqiang. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865–1883. doi: 10.1109/JPROC.2017.2675998
    陈小龙, 关键, 何友, 等. 高分辨稀疏表示及其在雷达动目标检测中的应用[J]. 雷达学报, 2017, 6(3): 239–251. doi: 10.12000/JR16110

    CHEN Xiaolong, GUAN Jian, HE You, et al. High-resolution sparse representation and its applications in radar moving target detection[J]. Journal of Radars, 2017, 6(3): 239–251. doi: 10.12000/JR16110
    BALL J E, ANDERSON D T, and CHAN C S. Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community[J]. Journal of Applied Remote Sensing, 2017, 11(4): 042609. doi: 10.1117/1.JRS.11.042609
    PEI Jifang, HUANG Yulin, HUO Weibo, et al. SAR automatic target recognition based on multiview deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 2196–2210. doi: 10.1109/tgrs.2017.2776357
    GOODFELLOW I, BENGIO Y, and COURVILLE A. Deep Learning[M]. Cambridge, Massachusetts: MIT Press, 2016.
    LECUN Yann, BOTTOU Léon, BENGIO Yoshua, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    RUSSAKOVSKY O, DENG Jia, SU Hao, et al. Imagenet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211–252. doi: 10.1007/s11263-015-0816-y
    ZEILER M D and FERGUS R. Visualizing and understanding convolutional networks[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 818–833.
    SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. http://arxiv.org/abs/1409.1556, 2014.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
    HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[EB/OL]. https://arxiv.org/abs/1709.01507, 2017.
    许强, 李伟, LOUMBI P. 深度卷积神经网络在SAR自动目标识别领域的应用综述[J]. 电讯技术, 2018, 58(1): 106–112. doi: 10.3969/j.issn.1001-893x.2018.01.019

    XU Qiang, LI Wei, and LOUMBI P. Applications of Deep convolutional neural network in SAR automatic target recognition: a summarization[J]. Telecommunication Engineering, 2018, 58(1): 106–112. doi: 10.3969/j.issn.1001-893x.2018.01.019
    苏宁远, 陈小龙, 关键, 等. 基于卷积神经网络的海上微动目标检测与分类方法[J]. 雷达学报, 2018, 7(5): 565–574. doi: 10.12000/JR18077

    SU Ningyuan, CHEN Xiaolong, GUAN Jian, et al. Detection and classification of maritime target with micro-motion based on CNNs[J]. Journal of Radars, 2018, 7(5): 565–574. doi: 10.12000/JR18077
    杜兰, 刘彬, 王燕, 等. 基于卷积神经网络的SAR图像目标检测算法[J]. 电子与信息学报, 2016, 38(12): 3018–3025. doi: 10.11999/JEIT161032

    DU Lan, LIU Bin, WANG Yan, et al. Target detection method based on convolutional neural network for SAR image[J]. Journal of Electronics &Information Technology, 2016, 38(12): 3018–3025. doi: 10.11999/JEIT161032
    GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 580–587.
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 346–361.
    GIRSHICK R. Fast R-CNN[C]. The IEEE international Conference on Computer Vision, Santiago, Chile, 2015: 1440–1448.
    REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 91–99.
    DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN: Object detection via region-based fully convolutional networks[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 379–387.
    KONG Tao, YAO Anbang, CHEN Yurong, et al. Hypernet: Towards accurate region proposal generation and joint object detection[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 845–853.
    LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 936–944.
    HE Kaiming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]. The 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2980–2988.
    WANG Sifei, CUI Zongyong, and CAO Zongjie. Target recognition in large scene SAR images based on region proposal regression[C]. The 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017: 3297–3300.
    LI Jianwei, QU Changwen, and SHAO Jiaqi. Ship detection in SAR images based on an improved faster R-CNN[C]. The 2017 SAR in Big Data Era: Models, Methods and Applications, Beijing, China, 2017: 1–6.
    KANG Miao, LENG Xiangguang, LIN Zhao, et al. A modified faster R-CNN based on CFAR algorithm for SAR ship detection[C]. The 2017 International Workshop on Remote Sensing with Intelligent Processing, Shanghai, China, 2017: 1–4.
    KANG Miao, JI Kefeng, LENG Xiangguang, et al. Contextual region-based convolutional neural network with multilayer fusion for SAR ship detection[J]. Remote Sensing, 2017, 9(8): 860. doi: 10.3390/rs9080860
    JIAO Jiao, ZHANG Yue, SUN Hao, et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection[J]. IEEE Access, 2018, 6: 20881–20896. doi: 10.1109/ACCESS.2018.2825376
    ZHONG Yanfei, HAN Xiaobing, and ZHANG Liangpei. Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 138: 281–294. doi: 10.1016/j.isprsjprs.2018.02.014
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788.
    LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
    WANG Yuanyuan, WANG Chao, ZHANG Hong, et al. Combing single shot multibox detector with transfer learning for ship detection using Chinese Gaofen-3 images[C]. The 2017 Progress in Electromagnetics Research Symposium - Fall, Singapore, 2018: 712–716.
    WANG Yuanyuan, WANG Chao, and ZHANG Hong. Combining a single shot multibox detector with transfer learning for ship detection using sentinel-1 SAR images[J]. Remote Sensing Letters, 2018, 9(8): 780–788. doi: 10.1080/2150704X.2018.1475770
    KONG Tao, SUN Fuchun, YAO Anbang, et al. Ron: Reverse connection with objectness prior networks for object detection[C]. The 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 5244–5252.
    CUI Zongyong, DANG Sihang, CAO Zongjie, et al. SAR target recognition in large scene images via region-based convolutional neural networks[J]. Remote Sensing, 2018, 10(5): 776. doi: 10.3390/rs10050776
    NI Jiacheng and XU Yuelei. SAR automatic target recognition based on a visual cortical system[C]. The 6th International Congress on Image and Signal Processing, Hangzhou, China, 2013: 778–782.
    CHEN Sizhe and WANG Haipeng. SAR target recognition based on deep learning[C]. The 2014 International Conference on Data Science and Advanced Analytics, Shanghai, China, 2014: 541–547.
    WAGNER S. Combination of convolutional feature extraction and support vector machines for radar ATR[C]. The 17th International Conference on Information Fusion, Salamanca, Spain, 2014: 1–6.
    WANG Haipeng, CHEN Sizhe, XU Feng, et al. Application of deep-learning algorithms to MSTAR data[C]. The 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 3743–3745.
    WAGNER S. Morphological component analysis in SAR images to improve the generalization of ATR systems[C]. The 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing, Pisa, Italy, 2015: 46–50.
    SCHWEGMANN C P, KLEYNHANS W, SALMON B P, et al. Very deep learning for ship discrimination in Synthetic Aperture Radar imagery[C]. The 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 104–107.
    CHO J H and PARK C G. Additional feature CNN based automatic target recognition in SAR image[C]. The 40th Asian Conference on Defence Technology, Tokyo, Japan, 2017: 1–4.
    LIN Zhao, JI Kefeng, KANG Miao, et al. Deep convolutional highway unit network for SAR target classification with limited labeled training data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1091–1095. doi: 10.1109/lgrs.2017.2698213
    HE Hao, WANG Shicheng, YANG Dongfang, et al. SAR target recognition and unsupervised detection based on convolutional neural network[C]. The 2017 Chinese Automation Congress, Jinan, China, 2017: 435–438.
    田壮壮, 占荣辉, 胡杰民, 等. 基于卷积神经网络的SAR图像目标识别研究[J]. 雷达学报, 2016, 5(3): 320–325. doi: 10.12000/JR16037

    TIAN Zhuangzhuang, ZHAN Ronghui, HU Jiemin, et al. SAR ATR based on convolutional neural network[J]. Journal of Radars, 2016, 5(3): 320–325. doi: 10.12000/JR16037
    CHEN Sizhe, WANG Haipeng, XU Feng, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. doi: 10.1109/tgrs.2016.2551720
    WILMANSKI M, KREUCHER C, and LAUER J. Modern approaches in deep learning for SAR ATR[J]. SPIE, 2016, 9843: 98430N. doi: 10.1117/12.2220290
    赵娟萍, 郭炜炜, 柳彬, 等. 基于概率转移卷积神经网络的含噪标记SAR图像分类[J]. 雷达学报, 2017, 6(5): 514–523. doi: 10.12000/JR16140

    ZHAO Juanping, GUO Weiwei, LIU Bin, et al. Convolutional neural network-based SAR image classification with noisy labels[J]. Journal of Radars, 2017, 6(5): 514–523. doi: 10.12000/JR16140
    AMRANI M and JIANG Feng. Deep feature extraction and combination for synthetic aperture radar target classification[J]. Journal of Applied Remote Sensing, 2017, 11(4): 042616. doi: 10.1117/1.Jrs.11.042616
    WANG Ning, WANG Yinghua, LIU Hongwei, et al. Feature-fused SAR target discrimination using multiple convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1695–1699. doi: 10.1109/lgrs.2017.2729159
    ZHENG Ce, JIANG Xue, and LIU Xingzhao. Generalized synthetic aperture radar automatic target recognition by convolutional neural network with joint use of two-dimensional principal component analysis and support vector machine[J]. Journal of Applied Remote Sensing, 2017, 11(4): 046007. doi: 10.1117/1.Jrs.11.046007
    刘晨, 曲长文, 周强, 等. 基于卷积神经网络迁移学习的SAR图像目标分类[J]. 现代雷达, 2018, 40(3): 38–42. doi: 10.16592/j.cnki.1004-7859.2018.03.009

    LIU Chen, QU Changwen, ZHOU Qiang, et al. SAR image target classification based on convolutional neural network transfer learning[J]. Modern Radar, 2018, 40(3): 38–42. doi: 10.16592/j.cnki.1004-7859.2018.03.009
    LI Xuan, LI Chunsheng, WANG Pengbo, et al. SAR ATR based on dividing CNN into CAE and SNN[C]. The 5th IEEE Asia-Pacific Conference on Synthetic Aperture Radar, Singapore, 2015: 676–679.
    李松, 魏中浩, 张冰尘, 等. 深度卷积神经网络在迁移学习模式下的SAR目标识别[J]. 中国科学院大学学报, 2018, 35(1): 75–83. doi: 10.7523/j.issn.2095-6134.2018.01.010

    LI Song, WEI Zhonghao, ZHANG Bingchen, et al. Target recognition using the transfer learning-based deep convolutional neural networks for SAR images[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(1): 75–83. doi: 10.7523/j.issn.2095-6134.2018.01.010
    ØDEGAARD N, KNAPSKOG A O, COCHIN C, et al. Classification of ships using real and simulated data in a convolutional neural network[C]. The 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–6.
    KARABAYIR O, YUCEDAG O M, KARTAL M Z, et al. Convolutional neural networks-based ship target recognition using high resolution range profiles[C]. The 18th International Radar Symposium, Prague, Czech Republic, 2017.
    BENTES C, VELOTTO D, and LEHNER S. Target classification in oceanographic SAR images with deep neural networks: Architecture and initial results[C]. The 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 3703–3706.
    WANG Zhaocheng, DU Lan, WANG Fei, et al. Multi-scale target detection in SAR image based on visual attention model[C]. The 5th IEEE Asia-Pacific Conference on Synthetic Aperture Radar, Singapore, 2015: 704–709.
    YUAN Lele. A time-frequency feature fusion algorithm based on neural network for HRRP[J]. Progress in Electromagnetics Research, 2017, 55: 63–71. doi: 10.2528/PIERM16123002
    BENGIO Y, MESNARD T, FISCHER A, et al. STDP-compatible approximation of backpropagation in an energy-based model[J]. Neural Computation, 2017, 29(3): 555–577. doi: 10.1162/NECO_a_00934
    LECUN Y, BENGIO Y, and HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539
    HOWARD A G, ZHU Menglong, CHEN Bo, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. http://arxiv.org/abs/1704.04861, 2017.
    HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]. The IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 2261–2269.
    GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
  • 加载中
图(3) / 表(6)
计量
  • 文章访问数:  6927
  • HTML全文浏览量:  2878
  • PDF下载量:  969
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-18
  • 修回日期:  2019-02-18
  • 网络出版日期:  2019-03-21
  • 刊出日期:  2020-01-21

目录

    /

    返回文章
    返回