高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Hilbert信号空间的未知干扰自适应识别方法

黄国策 王桂胜 任清华 董淑福 高维廷 魏帅

黄国策, 王桂胜, 任清华, 董淑福, 高维廷, 魏帅. 基于Hilbert信号空间的未知干扰自适应识别方法[J]. 电子与信息学报, 2019, 41(8): 1916-1923. doi: 10.11999/JEIT180891
引用本文: 黄国策, 王桂胜, 任清华, 董淑福, 高维廷, 魏帅. 基于Hilbert信号空间的未知干扰自适应识别方法[J]. 电子与信息学报, 2019, 41(8): 1916-1923. doi: 10.11999/JEIT180891
Guoce HUANG, Guisheng WANG, Qinghua REN, Shufu DONG, Weiting GAO, Shuai WEI. Adaptive Recognition Method for Unknown Interference Based on Hilbert Signal Space[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1916-1923. doi: 10.11999/JEIT180891
Citation: Guoce HUANG, Guisheng WANG, Qinghua REN, Shufu DONG, Weiting GAO, Shuai WEI. Adaptive Recognition Method for Unknown Interference Based on Hilbert Signal Space[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1916-1923. doi: 10.11999/JEIT180891

基于Hilbert信号空间的未知干扰自适应识别方法

doi: 10.11999/JEIT180891
基金项目: 国家自然科学基金(61701521),中国博士后科学基金(2016M603044),陕西省自然科学基金(2018JQ6074)
详细信息
    作者简介:

    黄国策:男,1962年生,博士,教授,研究方向为军事航空通信、短波组网

    王桂胜:男,1992年生,博士生,研究方向为军事航空通信、通信抗干扰、认知无线网络

    任清华:男,1967年生,教授,研究方向为军事航空通信、变换域通信

    董淑福:男,1971年生,教授,研究方向为军事航空通信、短波组网

    高维廷:男,1984年生,博士,研究方向为电磁频谱管理

    魏帅:女,1993年生,硕士,研究方向为多目标跟踪识别

    通讯作者:

    王桂胜 wgsfuyun@163.com

  • 中图分类号: TN92

Adaptive Recognition Method for Unknown Interference Based on Hilbert Signal Space

Funds: The National Natural Science Foundation of China (61701521), The Postdoctoral Science Foundation of China (2016M603044), The Shaanxi Province Natural Science Foundation (2018JQ6074)
  • 摘要: 针对大样本下未知干扰类型的分类识别问题,该文提出一种基于信号特征空间的未知干扰自适应识别方法。首先,基于Hilbert信号空间理论对干扰信号进行处理,建立干扰信号特征空间,进而利用投影定理对未知干扰进行最佳逼近,提出基于信号特征空间的概率神经网络(PNN)分类算法,并设计了未知干扰分类识别器的处理流程。仿真结果表明,与两种传统方法相比,该方法在已知干扰的分类精度方面分别提高了12.2%和2.8%;满足条件的未知干扰最佳逼近效果随功率强度呈线性变化,设计的分类识别器在满足最佳逼近的各类干扰中总体识别率达到91.27%,处理干扰识别的速度明显改善;在信噪比达到4 dB时,对未知干扰识别准确率达到92%以上。
  • 图  1  基于信号特征空间的概率神经网络结构图

    图  2  干扰分类处理流程图

    图  3  不同干扰功率下最佳逼近均方根误差图

    图  4  不同信噪比下本文多分类算法识别率

    表  1  干扰信号参数

    干扰类型干扰参数数值
    单音干扰干扰频点(MHz)150
    多音干扰干扰频点(MHz)50, 100, ···, 250
    部分频带干扰覆盖带宽(MHz)250~400
    脉冲干扰占空比(%)10
    线性调频干扰
    (单分量)
    初始频率(MHz)150
    调频率500
    梳状谱干扰分量数目3
    带宽(MHz)800
    下载: 导出CSV

    表  2  干扰分类算法识别率比较

    信号空间数据集识别率(%)
    单音干扰多音干扰部分频带线性调频脉冲干扰梳状谱总体识别率
    传统SVM分类器85.098.710082.59081.286.3
    文献[12]10098.710098.710098.795.7
    本文算法10010010091.010010098.5
    下载: 导出CSV

    表  3  多分类算法性能比较(%)

    干扰空间数据集分类识别率训练识别率测试识别率
    本文算法传统算法本文算法传统算法本文算法传统算法
    单音干扰92.4147.5592.5950.8591.2746.24
    多音干扰98.7345.37
    部分频带81.0145.99
    线性调频10045.37
    脉冲干扰74.3645.86
    梳状谱98.7246.94
    未知干扰93.5946.62
    下载: 导出CSV
  • POISEL R A. Modern Communications Jamming Principles and Techniques[M]. Boston: Artech House, 2011: 279–288.
    HU Su, BI Guoan, GUAN Yongliang, et al. TDCS-based cognitive radio networks with multiuser interference avoidance[J]. IEEE Transactions on Communications, 2013, 61(12): 4828–4835. doi: 10.1109/TCOMM.2013.111313.130261
    ERHAN D, SZEGEDY C, TOSHEV A, et al. Scalable object detection using deep neural networks[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 2155–2162. doi: 10.1109/CVPR.2014.276.
    OQUAB M, BOTTOU L, LAPTEV I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C]. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014: 1717–1724. doi: 10.1109/CVPR.2014.222.
    WATT N and DU PLESSIS M C. Dropout algorithms for recurrent neural networks[C]. The Annual Conference of the South African Institute of Computer Scientists and Information Technologists, Port Elizabeth, South Africa, 2018: 72–78. doi: 10.1145/3278681.3278691.
    WANG Shangxing, LIU Hanpeng, GOMES P H, et al. Deep reinforcement learning for dynamic multichannel access in wireless networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(2): 257–265. doi: 10.1109/TCCN.2018.2809722
    张彪, 闫晓鹏, 栗苹, 等. 基于支持向量机的无线电引信抗扫频式干扰研究[J]. 兵工学报, 2016, 37(4): 635–640. doi: 10.3969/j.issn.1000-1093.2016.04.009

    ZHANG Biao, YAN Xiaopeng, LI Ping, et al. Research on anti-frequency sweeping jamming of radio fuze based on support vector machine[J]. Acta Armamentarii, 2016, 37(4): 635–640. doi: 10.3969/j.issn.1000-1093.2016.04.009
    王国宏, 白杰, 张翔宇, 等. 基于FRFT域特征差异的压制干扰检测与分类算法[J]. 北京航空航天大学学报, 2018, 44(6): 1124–1132. doi: 10.13700/j.bh.1001-5965.2017.0423

    WANG Guohong, BAI Jie, ZHANG Xiangyu, et al. Detection and classification algorithm of suppression interference based on characteristic differences of FRFT domain[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1124–1132. doi: 10.13700/j.bh.1001-5965.2017.0423
    刘明骞, 李兵兵, 曹超凤, 等. 认知无线电中非高斯噪声下数字调制信号识别方法[J]. 通信学报, 2014, 35(1): 82–88. doi: 10.3969/j.issn.1000-436x.2014.01.010

    LIU Mingqian, LI Bingbing, CAO Chaofeng, et al. Recognition method of digital modulation signals over non-Gaussian noise in cognitive radio[J]. Journal on Communications, 2014, 35(1): 82–88. doi: 10.3969/j.issn.1000-436x.2014.01.010
    YANG Zeyi, TAO Ran, WANG Yue, et al. A novel multi-carrier order division multi-access communication system based on TDCS with fractional Fourier transform scheme[J]. Wireless Personal Communications, 2014, 79(2): 1301–1320. doi: 10.1007/s11277-014-1931-8
    KUZOVNIKOV A V. Study of the methods for developing jamming-immune communications systems with the use of wavelet-modulated signals[J]. Journal of Communications Technology and Electronics, 2014, 59(1): 61–70. doi: 10.1134/S1064226914010069
    王桂胜, 任清华, 姜志刚, 等. 基于信号特征空间的TDCS干扰分类识别[J]. 系统工程与电子技术, 2017, 39(9): 1950–1958. doi: 10.3969/j.issn.1001-506X.2017.09.06

    WANG Guisheng, REN Qinghua, JIANG Zhigang, et al. Jamming classification and recognition in transform domain communication system based on signal feature space[J]. Systems Engineering and Electronics, 2017, 39(9): 1950–1958. doi: 10.3969/j.issn.1001-506X.2017.09.06
    TAO Chao, PAN Hongbo, LI Yansheng, et al. Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12): 2438–2442. doi: 10.1109/LGRS.2015.2482520
    郭立民, 寇韵涵, 陈涛, 等. 基于栈式稀疏自编码器的低信噪比下低截获概率雷达信号调制类型识别[J]. 电子与信息学报, 2018, 40(4): 875–881. doi: 10.11999/JEIT170588

    GUO Limin, KOU Yunhan, CHEN Tao, et al. Low probability of intercept radar signal recognition based on stacked sparse auto-encoder[J]. Journal of Electronics &Information Technology, 2018, 40(4): 875–881. doi: 10.11999/JEIT170588
    DONOHO D L, TSAIG Y, DRORI I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094–1121. doi: 10.1109/TIT.2011.2173241
    王磊, 周乐囡, 姬红兵, 等. 一种面向信号分类的匹配追踪新方法[J]. 电子与信息学报, 2014, 36(6): 1299–1306. doi: 10.3724/SP.J.1146.2013.00942

    WANG Lei, ZHOU Lenan, JI Hongbing, et al. A new matching pursuit algorithm for signal classification[J]. Journal of Electronics &Information Technology, 2014, 36(6): 1299–1306. doi: 10.3724/SP.J.1146.2013.00942
    GONZÁLEZ-CAMACHO J M, CROSSA J, PÉREZ-RODRÍGUEZ P, et al. Genome-enabled prediction using probabilistic neural network classifiers[J]. BMC Genomics, 2016, 17: 208. doi: 10.1186/s12864-016-2553-1
    张国亮, 杨春玲, 王暕来. 基于优化概率神经网络和红外多光谱融合的大气层外空间弹道目标识别[J]. 电子与信息学报, 2014, 36(4): 896–902. doi: 10.3724/SP.J.1146.2013.00623

    ZHANG Guoliang, YANG Chunling, and WANG Jianlai. Discrimination of exo-atmospheric targets based on optimization of probabilistic neural network and IR multispectral fusion[J]. Journal of Electronics &Information Technology, 2014, 36(4): 896–902. doi: 10.3724/SP.J.1146.2013.00623
    GIRYES R and NEEDELL D. Near oracle performance and block analysis of signal space greedy methods[J]. Journal of Approximation Theory, 2015, 194: 157–174. doi: 10.1016/j.jat.2015.02.007
    GIRYES R and NEEDELL D. Greedy signal space methods for incoherence and beyond[J]. Applied and Computational Harmonic Analysis, 2015, 39(1): 1–20. doi: 10.1016/j.acha.2014.07.004
    胡广书. 数字信号处理—理论、算法与实现[M]. 第3版, 北京: 清华大学出版社, 2012: 169–175.

    HU Guangshu. Digital Signal Processing—Theory, Algorithm and Implementation[M]. 3rd ed, Beijing: Tsinghua University Press, 2012: 169–175.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  2054
  • HTML全文浏览量:  1015
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-18
  • 修回日期:  2019-03-26
  • 网络出版日期:  2019-04-23
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回