高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声表面波谐振器回波信号的频率估计

刘伯权 郭佳佳 罗治民

刘伯权, 郭佳佳, 罗治民. 声表面波谐振器回波信号的频率估计[J]. 电子与信息学报, 2019, 41(9): 2087-2094. doi: 10.11999/JEIT180875
引用本文: 刘伯权, 郭佳佳, 罗治民. 声表面波谐振器回波信号的频率估计[J]. 电子与信息学报, 2019, 41(9): 2087-2094. doi: 10.11999/JEIT180875
Boquan LIU, Jiajia GUO, Zhiming LUO. Surface Acoustic Wave Resonator Echo Signal Frequency Estimation[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2087-2094. doi: 10.11999/JEIT180875
Citation: Boquan LIU, Jiajia GUO, Zhiming LUO. Surface Acoustic Wave Resonator Echo Signal Frequency Estimation[J]. Journal of Electronics & Information Technology, 2019, 41(9): 2087-2094. doi: 10.11999/JEIT180875

声表面波谐振器回波信号的频率估计

doi: 10.11999/JEIT180875
基金项目: 国家自然科学基金(61601395)
详细信息
    作者简介:

    刘伯权:男,1985年生,讲师,主要研究方向为无线无源声表面波传感器超分辨率测量方法研究、集成电路设计等

    郭佳佳:男,1993年生,硕士生,信号处理与超分辨率研究等

    罗治民:男,1991年生,硕士生,集成电路设计

    通讯作者:

    郭佳佳 stujiajia@126.com

  • 中图分类号: TN911.72

Surface Acoustic Wave Resonator Echo Signal Frequency Estimation

Funds: The National Natural Science Foundation of China (61601395)
  • 摘要: 声表面波(SAW)谐振器测量技术能在高温、高压、强电磁辐射和强电磁干扰等恶劣环境下,实现无线无源的参数检测。针对声表面波谐振器回波信号的非平稳特点,该文提出一种回波信号的频率测量方法“数字频率有效位数跟进法”(DFSPT)。仿真结果表明,该方法与现有的基于傅里叶变换法(FFT)和奇异值分解法(SVD)的方法相比,其能根据信噪比的不同,自行确定数字频率有效数字的位数,提高了频率估计的精度和稳定性。无线SAW温度传感器实验表明,该方法的频率估计标准差小,鲁棒性高。
  • 图  1  不同测量距离下的回波信号时域波形

    图  2  误差图

    图  3  迭代加权前后比较图

    图  4  k值分析图

    图  5  不同信噪比下有效数字选取过程

    图  6  3种算法仿真结果

    图  7  算法耗时波动图

    图  8  测量频率值波动图

  • LUAN Congcong, YAO Xinhua, CHEN Qiuyue, et al. Research on transmission performance of a surface acoustic wave sensing system used in manufacturing environment monitoring[J]. Journal of Zhejiang University-Science A: Applied Physics & Engineering, 2017, 18(6): 443–453. doi: 10.1631/jzus.A1600259
    张政健, 程龙. 声表面波技术在变电站温度检测系统中的应用设计[J]. 现代电子技术, 2018, 41(9): 117–120. doi: 10.16652/j.issn.1004-373x.2018.09.026

    ZHANG Zhengjian and CHENG Long. Application of SAW technology in substation temperature monitoring system[J]. Modern Electronics Technique, 2018, 41(9): 117–120. doi: 10.16652/j.issn.1004-373x.2018.09.026
    贾雅娜, 王文. 基于磁致伸缩效应的声表面波电流传感器敏感机理分析[J]. 传感技术学报, 2017, 30(9): 1310–1317. doi: 10.3969/j.issn.1004-1699.2017.09.002

    JIA Ya’na and WANG Wen. The sensitive mechanism of SAW current sensor based on the magnetomechanics effect[J]. Chinese Journal of Sensors and Actuators, 2017, 30(9): 1310–1317. doi: 10.3969/j.issn.1004-1699.2017.09.002
    潘小山, 刘芮彤, 王琴, 等. 声表面波传感器的原理及应用综述[J]. 传感器与微系统, 2018, 37(4): 1–4. doi: 10.13873/J.1000-9787(2018)04-0001-04

    PAN Xiaoshan, LIU Ruitong, WANG Qin, et al. Research progress of surface acoustic wave based gas sensors[J]. Transducer and Microsystem Technologies, 2018, 37(4): 1–4. doi: 10.13873/J.1000-9787(2018)04-0001-04
    PARK Y M, MOON U C, and LEE K Y. A self-organizing fuzzy logic controller for dynamic systems using a Fuzzy Auto-Regressive Moving Average (FARMA) model[J]. IEEE Transactions on Fuzzy Systems, 1995, 3(1): 75–82. doi: 10.1109/91.366563
    龙俊波, 汪海滨. 基于SαS过程的分数低阶时频自回归滑动平均模型参数估计及时频分布[J]. 电子与信息学报, 2016, 38(7): 1710–1716. doi: 10.11999/JEIT151066

    LONG Junbo and WANG Haibin. Parameter estimation and time-frequency distribution of fractional lower order time-frequency auto-regressive moving average model algorithm based on SαS process[J]. Journal of Electronics &Information Technology, 2016, 38(7): 1710–1716. doi: 10.11999/JEIT151066
    SO H C and CHAN K W. Reformulation of Pisarenko harmonic decomposition method for single-tone frequency estimation[J]. IEEE Transactions on Signal Processing, 2004, 52(4): 1128–1135. doi: 10.1109/TSP.2004.823473
    LEWANDOWSKI M and WALCZAK J. Optimal base frequency estimation of an electrical signal based on Prony’s estimator and a FIR filter[J]. Applied Mathematics and Computation, 2018, 319: 551–561. doi: 10.1016/j.amc.2017.06.004
    张晓威, 牛晓红, 翟广锐. 改进的Prony算法在多正弦信号频率估计中的应用研究[J]. 电力系统保护与控制, 2017, 45(15): 140–145. doi: 10.7667/PSPC160987

    ZHANG Xiaowei, NIU Xiaohong, and ZHAI Guangrui. Application research of the improved Prony algorithm in the multiple sinusoidal signal frequency estimation[J]. Power System Protection and Control, 2017, 45(15): 140–145. doi: 10.7667/PSPC160987
    SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830
    ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995.
    LATHAUWER L D, MOOR B D, and VANDEWALLE J. Blind source separation by higher-order singular value decomposition[C]. EU-SIPCO’94, Edinburgh, UK, 1994: 175–178.
    肖学蕊, 李红浪, 陈淑芬, 等. 一种基于奇异值分解的SAW传感器频率估计算法[J]. 压电与声光, 2017, 39(4): 487–489.

    XIAO Xuerui, LI Honglang, CHEN Shufen, et al. A SAW sensor frequency estimation algorithm based on singular value decomposition[J]. Piezoelectrics &Acoustooptics, 2017, 39(4): 487–489.
    RAO B D and ARUN K S. Model based processing of signals: A state space approach[J]. Proceedings of the IEEE, 1992, 80(2): 283–309. doi: 10.1109/5.123298
    张洪伦, 巴晓辉, 陈杰, 等. 基于FFT的微弱GPS信号频率精细估计[J]. 电子与信息学报, 2015, 37(9): 2132–2137. doi: 10.11999/JEIT150204

    ZHANG Honglun, BA Xiaohui, CHEN Jie, et al. FFT-based fine frequency estimation for weak GPS signal[J]. Journal of Electronics &Information Technology, 2015, 37(9): 2132–2137. doi: 10.11999/JEIT150204
    CHAN Y T, LAVOIE J M M, and PLANT J B. A parameter estimation approach to estimation of frequencies of sinusoids[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1981, 29(2): 214–219. doi: 10.1109/TASSP.1981.1163543
    REGALIA P A. An unbiased equation error identifier and reduced-order approximations[J]. IEEE Transactions on Signal Processing, 1994, 42(6): 1397–1412. doi: 10.1109/78.286956
    MOON T K and STIRLING W C. Mathematical Methods and Algorithms for Signal Processing[M]. Upper Saddle River, NJ: Prentice Hall, 2000.
    SODERSTROM T and STOICA P. System Identification[M]. Englewood Cliffs, NJ: Prentice Hall, 1989.
    蔡晓峰, 张鸿博, 鲁改凤. 应用三谱线插值FFT分析电力谐波的改进算法[J]. 电力系统保护与控制, 2015, 43(2): 33–39.

    CAI Xiaofeng, ZHANG Hongbo, and LU Gaifeng. Improvement algorithm for harmonic analysis of power system using triple-spectrum-line interpolation algorithm based on window FFT[J]. Power System Protection and Control, 2015, 43(2): 33–39.
    刘伯权. 自确认无线无缘谐振式声表面波传感器系统[D]. [博士论文], 上海交通大学, 2015.

    LIU Boquan. Wireless and passive surface acoustic wave sensor system with self-validating ability[D]. [Ph.D. dissertation], Shanghai Jiaotong University, 2015.
  • 加载中
图(8)
计量
  • 文章访问数:  3136
  • HTML全文浏览量:  1256
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-07
  • 修回日期:  2019-02-18
  • 网络出版日期:  2019-03-13
  • 刊出日期:  2019-09-10

目录

    /

    返回文章
    返回