A Model for Virtualized Network Function Placement with Hardware Acceleration Support
-
摘要: 为解决以软件实现的虚拟网络功能(VNF)性能受限问题,软件定义网络和网络功能虚拟化(SDN/NFV)等新型网络架构引入了硬件加速资源。硬件加速资源的部署,使得VNF能够为日益增长的数据流量提供服务保障。该文针对已有研究未考虑具有高性能数据处理需求的服务链VNF部署问题,提出一种支持硬件加速的VNF部署模型。该模型基于硬件加速资源的承载特性,在保证未加速VNF到商用服务器的优化部署下,优先实现交换机中加速资源的复用,并根据网络业务的性能需求,灵活调整加速资源与VNF的映射约束。仿真实验表明,与其他典型部署方法相比,在引入相同硬件加速资源的情况下,该模型可以承载更多的业务流量,满足服务链高性能数据处理需求,有效提高了部署在网络中加速硬件的资源利用率。Abstract: In order to deal with the limited capacity of Virtualized Network Function (VNF), hardware acceleration resources are adopted in Software-Defined Networking and Network Function Virtualization (SDN/NFV) architecture. The deployment of hardware acceleration resources enables VNF to provide service guarantees for increasing data traffic. To overcome the ignorance of the requirements for VNF with high processing throughput in service chain in existing researches, a model for VNF placement with hardware acceleration support is proposed. Based on the bearing characteristics of hardware acceleration resources, the model prioritizes the reuse of acceleration resources in the switch under the optimal placement of VNF without acceleration to commercial servers. The mapping correlation between hardware acceleration resources and VNF is flexibly adjusted according to the requirements of network services. Simulation results show that the proposed model can bear more service flows and meet the high processing throughput needs of service chains than typical policies in the case of the same amount of resources, which improves effectively the resource utilization of the acceleration hardware deployed in the network.
-
表 1 HMRP算法
输入:服务请求集合D,底层网络G,VNF参数集合F 输出:VNF部署方案Pd (1) 根据服务请求${d_i}$,更新底层网络$G\ '$ (2) for x←1 to |S| do //搜索网络中转发节点 (3) s_temp←${o_i}$, g*←0, $\left\{ {{s^*}} \right\} \leftarrow \varPhi $; //初始化搜索节点、链路约束和复用节点集合 (4) find $(s|\alpha \left( {a,s} \right) = 1)$, update g*; //从${o_i}$出发搜索含有${A_s}$的交换节点,并更新链路约束 (5) if $\varepsilon ({f_{i',j'}},s)$==1 && ${f_{i',j'}}{\rm{ = }}{f_{i,j}}$ && ${H_{s,a}} > {c_{n,s}}\left( {{f_{i,j}}} \right)$ && $\left| {{o_i},s} \right| \le j \cdot \theta {g^*}$ then //s 满足复用约束 (6) {s*}←s ; //将复用s 加入{$s^*$} (7) if $\left\{ {{s^*}} \right\} = \varPhi $ then (8) reset空白交换节点$\left(s|\sum {\gamma (f,s) = 0} \right)$ to {$s^*$}; //将搜索到的空白交换节点置入{$s^*$} (9) deploy (${f_{i,j}} \in {F_{As}}$, {$s^*$}), addroute (${P_i}$, {$s^*$}); //构造初始路径 (10) for v←1 to S *+1 do // ${P_i}$分为S *+1段子路径,${L_i}$分为S *+1个子集 (11) if $\left\{ {{f_{i,j}} \in {F_{An}}|{f_{i,j}} \in {l_{i,v}}} \right\} \ne \varPhi $ then (12) deploy (${f_{i,j}} \in {F_{An}}$, ($n|\alpha \left( {a,n} \right) = 1, \; \beta \left( {n,s} \right) = 1, \; s \in {p_{i,v}}$)); //优先部署各子集中加速功能到加速卡 (13) deploy (${q_v}\left| {{\rm{ max}}\left( {{q_j}} \right), \; (n,s} \right|s \in {p_{i,v}},\beta \left( {n,s} \right) = 1 )$); //部署功能最多的方案到子路径上 (14) if $\left\{ {{f_{i,j}} \in {F_{As}}|{f_{i,j}} \in {l_{i,v}}} \right\} \ne \varPhi $ then //若各子集中仍有未部署的加速表网络功能 (15) deploy (${f_{i,j}} \in {F_{As}}, \; (n|\alpha (a,n) = 1, \; \beta \left( {n,s} \right) = 1, \; s \in {p_{i,v}})$); //放宽加速功能映射位置 (16) if $\left\{ {{f_{i,j}} \in {F_{As}} \cup {F_{An}}|{f_{i,j}} \in {l_{i,v}}} \right\} \ne \varPhi $ then //仍有未部署的加速网络功能 (17) reject ${d_i}$; //拒绝该服务请求 (18) break; (19) First-fit_deploy (${f_{i,j}} \in {L_i},n$); //利用First-Fit部署剩余网络功能 表 2 VNF资源参数
VNF类型 1 2 3 4 5 6 7 8 9 10 11 计算存储资源开销cn 3 4 6 5 5 2 7 6 4 7 5 加速表资源开销${c_{s,a}}$ 2 3 – 5 2 3 – 4 2 – 2 加速卡资源开销${c_{n,a}}$ 1 1 33 2 1 2 2 2 1 3 1 -
HONG Chiyao, CAESAR M, and GODFREY P B. Finishing flows quickly with preemptive scheduling[C]. ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, Helsinki, Finland, 2012: 127–138. BOURAS C, KOLLIA A, and PAPAZOIS A. SDN & NFV in 5G: advancements and challenges[C]. The 20th Conference on Innovations in Clouds, Internet and Networks, Paris, France, 2017: 107–111. HAN Bo, GOPALAKRISHNAN V, JI Lusheng, et al. Network function virtualization: challenges and opportunities for innovations[J]. IEEE Communications Magazine, 2015, 53(2): 90–97. doi: 10.1109/MCOM.2015.7045396 MATIAS J, GARAY J, TOLEDO N, et al. Toward an SDN-enabled NFV architecture[J]. IEEE Communications Magazine, 2015, 53(4): 187–193. doi: 10.1109/MCOM.2015.7081093 BI Jun, ZHU Shuyong, SUN Chen, et al. Supporting virtualized network functions with stateful data plane abstraction[J]. IEEE Network, 2016, 30(3): 40–45. doi: 10.1109/MNET.2016.7474342 YI Xiaodong, DUAN Jingpu, and WU Chuan. GPUNFV: A GPU-accelerated NFV system[C]. The 1st Asia-Pacific Workshop on Networking, Hong Kong, China, 2017: 85–91. SONG Haoyu. Protocol-oblivious forwarding: unleash the power of SDN through a future-proof forwarding plane[C]. The 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, Hong Kong, China, 2013: 127–132. LI Bojie, TAN Kun, LUO Layong, et al. ClickNP: Highly flexible and high performance network processing with reconfigurable hardware[C]. 2016 ACM SIGCOMM Conference, Florianopolis, Brazil, 2016: 1–14. LI Xiaoyao, WANG Xiuxiu, LIU Fangming, et al. DHL: Enabling flexible software network functions with FPGA acceleration[C]. The IEEE 38th International Conference on Distributed Computing Systems, Vienna, Austria, 2018: 1–11. SUN Jian, ZHU Guangyang, SUN Gang, et al. A reliability-aware approach for resource efficient virtual network function deployment[J]. IEEE Access, 2018, 6: 18238–18250. doi: 10.1109/ACCESS.2018.2815614 KUO Tungwei, LIOU Bangheng, LIN K C J, et al. Deploying chains of virtual network functions: on the relation between link and server usage[C]. The 35th Annual IEEE International Conference on Computer Communications, San Francisco, USA, 2016: 1–9. doi: 10.1109/INFOCOM.2016.7524565. 陈卓, 冯钢, 刘蓓, 等. 运营商网络中面向资源碎片优化的网络服务链构建策略[J]. 电子与信息学报, 2018, 40(4): 763–769. doi: 10.11999/JEIT170641CHEN Zhuo, FENG Gang, LIU Bei, et al. Construction policy of network service chain oriented to resource fragmentation optimization in operator network[J]. Journal of Electronics &Information Technology, 2018, 40(4): 763–769. doi: 10.11999/JEIT170641 ZENG Chaobing, LIU Fangming, CHEN Shutong, et al. Demystifying the performance interference of co-located virtual network functions[C]. 2018 IEEE Conference on Computer Communications, Honolulu, USA, 2018: 765–773. 汤红波, 袁泉, 卢干强, 等. 一种支持节点分割的vEPC虚拟网络功能部署模型[J]. 电子与信息学报, 2017, 39(3): 546–553. doi: 10.11999/JEIT160507TANG Hongbo, YUAN Quan, LU Ganqiang, et al. A model for virtualized network function deployment based on node-splitting in vEPC[J]. Journal of Electronics &Information Technology, 2017, 39(3): 546–553. doi: 10.11999/JEIT160507 FENG Hao, LLORCA J, TULINO A M, et al. Approximation algorithms for the NFV service distribution problem[C]. 2017 IEEE Conference on Computer Communications, Atlanta, USA, 2017: 1–9. ERAMO V, AMMAR M, and LAVACCA F G. Migration energy aware reconfigurations of virtual network function instances in NFV architectures[J]. IEEE Access, 2017, 5: 4927–4938. doi: 10.1109/ACCESS.2017.2685437 SUN Chen, BI Jun, ZHENG Zhilong, et al. NFP: Enabling network function parallelism in NFV[C]. Conference of the ACM Special Interest Group on Data Communication, Los Angeles, USA, 2017: 43–56. MIJUMBI R, SERRAT J, GORRICHO J L, et al. Design and evaluation of algorithms for mapping and scheduling of virtual network functions[C]. The 2015 1st IEEE Conference on Network Softwarization, London, UK, 2015: 1–9. ZILBERMAN N, AUDZEVICH Y, KALOGERIDOU G, et al. NetFPGA: rapid prototyping of networking devices in open source[C]. 2015 ACM Conference on Special Interest Group on Data Communication, London, UK, 2015: 363–364. GE Xiongzi, LIU Yi, DU D H C, et al. OpenANFV: Accelerating network function virtualization with a consolidated framework in openstack[C]. 2014 ACM Conference on SIGCOMM, Chicago, USA, 2014: 353–354. 段通, 兰巨龙, 胡宇翔, 等. 面向SDN/NFV架构的VNF硬件加速资源编排机制[J]. 通信学报, 2018, 39(6): 98–108. doi: 10.11959/j.issn.1000-436x.2018108DUAN Tong, LAN Julong, HU Yuxiang, et al. Orchestration mechanism for VNF hardware acceleration resources in SDN/NFV architecture[J]. Journal on Communications, 2018, 39(6): 98–108. doi: 10.11959/j.issn.1000-436x.2018108