高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种支持硬件加速的虚拟网络功能部署模型

胡宇翔 范宏伟 兰巨龙 段通

胡宇翔, 范宏伟, 兰巨龙, 段通. 一种支持硬件加速的虚拟网络功能部署模型[J]. 电子与信息学报, 2019, 41(8): 1893-1901. doi: 10.11999/JEIT180861
引用本文: 胡宇翔, 范宏伟, 兰巨龙, 段通. 一种支持硬件加速的虚拟网络功能部署模型[J]. 电子与信息学报, 2019, 41(8): 1893-1901. doi: 10.11999/JEIT180861
Yuxiang HU, Hongwei FAN, Julong LAN, Tong DUAN. A Model for Virtualized Network Function Placement with Hardware Acceleration Support[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1893-1901. doi: 10.11999/JEIT180861
Citation: Yuxiang HU, Hongwei FAN, Julong LAN, Tong DUAN. A Model for Virtualized Network Function Placement with Hardware Acceleration Support[J]. Journal of Electronics & Information Technology, 2019, 41(8): 1893-1901. doi: 10.11999/JEIT180861

一种支持硬件加速的虚拟网络功能部署模型

doi: 10.11999/JEIT180861
基金项目: 国家网络空间安全专项基金(2017YFB0803204),国家自然科学基金(61521003)
详细信息
    作者简介:

    胡宇翔:男,1982年生,副教授,研究方向为未来网络关键技术和网络智慧化

    范宏伟:男,1994年生,硕士生,研究方向为网络功能虚拟化和硬件加速

    兰巨龙:男,1962年生,教授,博士生导师,研究方向为未来通信网络关键理论与技术

    段通:男,1992年生,博士生,研究方向为网络功能虚拟化和可编程硬件

    通讯作者:

    范宏伟 fhwxd@foxmail.com

  • 中图分类号: TP393

A Model for Virtualized Network Function Placement with Hardware Acceleration Support

Funds: The National Network Security Special Program of China (2017YFB0803204), The National Natural Science Foundation of China (61521003)
  • 摘要: 为解决以软件实现的虚拟网络功能(VNF)性能受限问题,软件定义网络和网络功能虚拟化(SDN/NFV)等新型网络架构引入了硬件加速资源。硬件加速资源的部署,使得VNF能够为日益增长的数据流量提供服务保障。该文针对已有研究未考虑具有高性能数据处理需求的服务链VNF部署问题,提出一种支持硬件加速的VNF部署模型。该模型基于硬件加速资源的承载特性,在保证未加速VNF到商用服务器的优化部署下,优先实现交换机中加速资源的复用,并根据网络业务的性能需求,灵活调整加速资源与VNF的映射约束。仿真实验表明,与其他典型部署方法相比,在引入相同硬件加速资源的情况下,该模型可以承载更多的业务流量,满足服务链高性能数据处理需求,有效提高了部署在网络中加速硬件的资源利用率。
  • 图  1  硬件加速资源对网络功能的承载

    图  2  VPHA底层网络示意

    图  3  算法仿真网络拓扑

    图  4  算法仿真性能对比

    图  5  模型验证示意

    图  6  数据包转发性能对比

    表  1  HMRP算法

     输入:服务请求集合D,底层网络G,VNF参数集合F
     输出:VNF部署方案Pd
     (1) 根据服务请求${d_i}$,更新底层网络$G\ '$
     (2) for x←1 to |S| do //搜索网络中转发节点
     (3)  s_temp←${o_i}$, g*←0, $\left\{ {{s^*}} \right\} \leftarrow \varPhi $; //初始化搜索节点、链路约束和复用节点集合
     (4)  find $(s|\alpha \left( {a,s} \right) = 1)$, update g*; //从${o_i}$出发搜索含有${A_s}$的交换节点,并更新链路约束
     (5)   if $\varepsilon ({f_{i',j'}},s)$==1 && ${f_{i',j'}}{\rm{ = }}{f_{i,j}}$ && ${H_{s,a}} > {c_{n,s}}\left( {{f_{i,j}}} \right)$ && $\left| {{o_i},s} \right| \le j \cdot \theta {g^*}$ then //s 满足复用约束
     (6)    {s*}←s ; //将复用s 加入{$s^*$}
     (7) if $\left\{ {{s^*}} \right\} = \varPhi $ then
     (8)  reset空白交换节点$\left(s|\sum {\gamma (f,s) = 0} \right)$ to {$s^*$}; //将搜索到的空白交换节点置入{$s^*$}
     (9) deploy (${f_{i,j}} \in {F_{As}}$, {$s^*$}), addroute (${P_i}$, {$s^*$}); //构造初始路径
     (10) for v←1 to S *+1 do // ${P_i}$分为S *+1段子路径,${L_i}$分为S *+1个子集
     (11)  if $\left\{ {{f_{i,j}} \in {F_{An}}|{f_{i,j}} \in {l_{i,v}}} \right\} \ne \varPhi $ then
     (12)   deploy (${f_{i,j}} \in {F_{An}}$, ($n|\alpha \left( {a,n} \right) = 1, \; \beta \left( {n,s} \right) = 1, \; s \in {p_{i,v}}$)); //优先部署各子集中加速功能到加速卡
     (13)  deploy (${q_v}\left| {{\rm{ max}}\left( {{q_j}} \right), \; (n,s} \right|s \in {p_{i,v}},\beta \left( {n,s} \right) = 1 )$); //部署功能最多的方案到子路径上
     (14)  if $\left\{ {{f_{i,j}} \in {F_{As}}|{f_{i,j}} \in {l_{i,v}}} \right\} \ne \varPhi $ then //若各子集中仍有未部署的加速表网络功能
     (15)   deploy (${f_{i,j}} \in {F_{As}}, \; (n|\alpha (a,n) = 1, \; \beta \left( {n,s} \right) = 1, \; s \in {p_{i,v}})$); //放宽加速功能映射位置
     (16)  if $\left\{ {{f_{i,j}} \in {F_{As}} \cup {F_{An}}|{f_{i,j}} \in {l_{i,v}}} \right\} \ne \varPhi $ then //仍有未部署的加速网络功能
     (17)   reject ${d_i}$; //拒绝该服务请求
     (18)   break;
     (19) First-fit_deploy (${f_{i,j}} \in {L_i},n$); //利用First-Fit部署剩余网络功能
    下载: 导出CSV

    表  2  VNF资源参数

    VNF类型1234567891011
    计算存储资源开销cn34655276475
    加速表资源开销${c_{s,a}}$23523422
    加速卡资源开销${c_{n,a}}$113321222131
    下载: 导出CSV
  • HONG Chiyao, CAESAR M, and GODFREY P B. Finishing flows quickly with preemptive scheduling[C]. ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, Helsinki, Finland, 2012: 127–138.
    BOURAS C, KOLLIA A, and PAPAZOIS A. SDN & NFV in 5G: advancements and challenges[C]. The 20th Conference on Innovations in Clouds, Internet and Networks, Paris, France, 2017: 107–111.
    HAN Bo, GOPALAKRISHNAN V, JI Lusheng, et al. Network function virtualization: challenges and opportunities for innovations[J]. IEEE Communications Magazine, 2015, 53(2): 90–97. doi: 10.1109/MCOM.2015.7045396
    MATIAS J, GARAY J, TOLEDO N, et al. Toward an SDN-enabled NFV architecture[J]. IEEE Communications Magazine, 2015, 53(4): 187–193. doi: 10.1109/MCOM.2015.7081093
    BI Jun, ZHU Shuyong, SUN Chen, et al. Supporting virtualized network functions with stateful data plane abstraction[J]. IEEE Network, 2016, 30(3): 40–45. doi: 10.1109/MNET.2016.7474342
    YI Xiaodong, DUAN Jingpu, and WU Chuan. GPUNFV: A GPU-accelerated NFV system[C]. The 1st Asia-Pacific Workshop on Networking, Hong Kong, China, 2017: 85–91.
    SONG Haoyu. Protocol-oblivious forwarding: unleash the power of SDN through a future-proof forwarding plane[C]. The 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking, Hong Kong, China, 2013: 127–132.
    LI Bojie, TAN Kun, LUO Layong, et al. ClickNP: Highly flexible and high performance network processing with reconfigurable hardware[C]. 2016 ACM SIGCOMM Conference, Florianopolis, Brazil, 2016: 1–14.
    LI Xiaoyao, WANG Xiuxiu, LIU Fangming, et al. DHL: Enabling flexible software network functions with FPGA acceleration[C]. The IEEE 38th International Conference on Distributed Computing Systems, Vienna, Austria, 2018: 1–11.
    SUN Jian, ZHU Guangyang, SUN Gang, et al. A reliability-aware approach for resource efficient virtual network function deployment[J]. IEEE Access, 2018, 6: 18238–18250. doi: 10.1109/ACCESS.2018.2815614
    KUO Tungwei, LIOU Bangheng, LIN K C J, et al. Deploying chains of virtual network functions: on the relation between link and server usage[C]. The 35th Annual IEEE International Conference on Computer Communications, San Francisco, USA, 2016: 1–9. doi: 10.1109/INFOCOM.2016.7524565.
    陈卓, 冯钢, 刘蓓, 等. 运营商网络中面向资源碎片优化的网络服务链构建策略[J]. 电子与信息学报, 2018, 40(4): 763–769. doi: 10.11999/JEIT170641

    CHEN Zhuo, FENG Gang, LIU Bei, et al. Construction policy of network service chain oriented to resource fragmentation optimization in operator network[J]. Journal of Electronics &Information Technology, 2018, 40(4): 763–769. doi: 10.11999/JEIT170641
    ZENG Chaobing, LIU Fangming, CHEN Shutong, et al. Demystifying the performance interference of co-located virtual network functions[C]. 2018 IEEE Conference on Computer Communications, Honolulu, USA, 2018: 765–773.
    汤红波, 袁泉, 卢干强, 等. 一种支持节点分割的vEPC虚拟网络功能部署模型[J]. 电子与信息学报, 2017, 39(3): 546–553. doi: 10.11999/JEIT160507

    TANG Hongbo, YUAN Quan, LU Ganqiang, et al. A model for virtualized network function deployment based on node-splitting in vEPC[J]. Journal of Electronics &Information Technology, 2017, 39(3): 546–553. doi: 10.11999/JEIT160507
    FENG Hao, LLORCA J, TULINO A M, et al. Approximation algorithms for the NFV service distribution problem[C]. 2017 IEEE Conference on Computer Communications, Atlanta, USA, 2017: 1–9.
    ERAMO V, AMMAR M, and LAVACCA F G. Migration energy aware reconfigurations of virtual network function instances in NFV architectures[J]. IEEE Access, 2017, 5: 4927–4938. doi: 10.1109/ACCESS.2017.2685437
    SUN Chen, BI Jun, ZHENG Zhilong, et al. NFP: Enabling network function parallelism in NFV[C]. Conference of the ACM Special Interest Group on Data Communication, Los Angeles, USA, 2017: 43–56.
    MIJUMBI R, SERRAT J, GORRICHO J L, et al. Design and evaluation of algorithms for mapping and scheduling of virtual network functions[C]. The 2015 1st IEEE Conference on Network Softwarization, London, UK, 2015: 1–9.
    ZILBERMAN N, AUDZEVICH Y, KALOGERIDOU G, et al. NetFPGA: rapid prototyping of networking devices in open source[C]. 2015 ACM Conference on Special Interest Group on Data Communication, London, UK, 2015: 363–364.
    GE Xiongzi, LIU Yi, DU D H C, et al. OpenANFV: Accelerating network function virtualization with a consolidated framework in openstack[C]. 2014 ACM Conference on SIGCOMM, Chicago, USA, 2014: 353–354.
    段通, 兰巨龙, 胡宇翔, 等. 面向SDN/NFV架构的VNF硬件加速资源编排机制[J]. 通信学报, 2018, 39(6): 98–108. doi: 10.11959/j.issn.1000-436x.2018108

    DUAN Tong, LAN Julong, HU Yuxiang, et al. Orchestration mechanism for VNF hardware acceleration resources in SDN/NFV architecture[J]. Journal on Communications, 2018, 39(6): 98–108. doi: 10.11959/j.issn.1000-436x.2018108
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  2944
  • HTML全文浏览量:  849
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-04
  • 修回日期:  2019-01-04
  • 网络出版日期:  2019-01-16
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回