高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于分布式压缩感知的矿井目标指纹数据库建立方法

田子建 贺方圆

王华彬, 李梦雯, 周健, 陶亮. 基于双Gabor方向韦伯局部描述子的掌纹识别[J]. 电子与信息学报, 2018, 40(4): 936-943. doi: 10.11999/JEIT170657
引用本文: 田子建, 贺方圆. 一种基于分布式压缩感知的矿井目标指纹数据库建立方法[J]. 电子与信息学报, 2019, 41(10): 2450-2456. doi: 10.11999/JEIT180857
WANG Huabin, LI Mengwen, ZHOU Jian, TAO Liang. Double Gabor Orientation Weber Local Descriptor for Palmprint Recognition[J]. Journal of Electronics & Information Technology, 2018, 40(4): 936-943. doi: 10.11999/JEIT170657
Citation: Zijian TIAN, Fangyuan HE. A Method of Establishing Mine Target Fingerprint Database Based on Distributed Compressed Sensing[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2450-2456. doi: 10.11999/JEIT180857

一种基于分布式压缩感知的矿井目标指纹数据库建立方法

doi: 10.11999/JEIT180857
基金项目: 国家重点研发计划专项(2016YFC0801804),国家自然科学基金(51674269)
详细信息
    作者简介:

    田子建:男,1964年生,教授,研究方向为矿井定位与通信

    贺方圆:女,1987年生,博士生,研究方向为矿井定位与通信

    通讯作者:

    田子建 tzj@cumtb.edu.cn

  • 中图分类号: TD655

A Method of Establishing Mine Target Fingerprint Database Based on Distributed Compressed Sensing

Funds: The Special Program of the National Key Research and Development Plan of China (2016YFC0801804), The National Natural Science Foundation of China(51674269)
  • 摘要: 针对目前国内矿井目标定位精度低和定位实时性差的现况,该文提出一种基于分布式压缩感知原理构造指纹数据库的方法,该方法在离线阶段只需采集少量巷道中的指纹信息(参考节点ID信息、基于电磁波到达时间(TOA)的距离测量值和实际距离值),便可高概率重构矿井目标指纹数据库指纹信息,从而达到减少数据采集工作量和提高工作效率的目的。后续在线阶段,只需获得某时刻参考节点ID信息和目标节点被参考节点测得的实时TOA距离测量值,根据模式匹配方法可获得该时刻目标节点距离参考节点的待估距离值,保证了定位精度和定位实时性。在此基础上,提出一种改进的压缩采样修正匹配追踪算法(CoSaMMP)进行指纹信息重构,该算法利用折半法增大裁剪力度从而有效缩短重构数据时间。仿真结果表明所提算法的可行性及有效性。
  • 图  1  巷道目标节点位置指纹定位节点布置图

    图  2  定位流程图

    图  3  现场实测图

    图  4  采样方式

    图  5  目标节点距离A1的定位误差

    图  6  测量数和重构成功概率的对比图

    图  7  测量数和重构时间对比图

    表  1  指纹数据库指纹信号

    指纹信号指纹数据
    1A1,A1,···,A1(NA1)
    2A2,A2,···,A2(NA2)
    3B1,B1,···,B1(NB1)
    4B2,B2,···,B2(NB2)
    5d11(p),d21(p),···,dN1(p)
    6d12(p),d22(p),···,dN2(p)
    7d13(p),d23(p),···,dN3(p)
    8d14(p),d24(p),···,dN4(p)
    9d11(p),d21(p),···,dN1(p)
    10d12(p),d22(p),···,dN2(p)
    11d13(p),d23(p),···,dN3(p)
    12d14(p),d24(p),···,dN4(p)
    下载: 导出CSV

    表  2  各算法的时间复杂度

    算法时间复杂度(M<N)
    SVR-KrigingO(N3)
    CoSaMPO(MN)
    CoSaMMPO(MN)
    ICoSaMMP(本文算法)O(MN)
    下载: 导出CSV

    表  3  本文算法各信号平均误差

    采样数l = 9l = 10l = 11l = 12
    Ml = 1000.981.060.900.96
    Ml = 1250.850.760.920.86
    下载: 导出CSV

    表  4  误差对比

    定位算法本文算法SVR-Kriging算法
    采样数Ml = 100Ml = 125Ml = 100
    最大误差2.371.851.90
    最小误差0.430.320.39
    平均误差0.980.850.92
    下载: 导出CSV
  • 孙继平. 2016年版《煤矿安全规程》监控与通信条款解析[J]. 工矿自动化, 2016, 42(5): 1–8. doi: 10.13272/j.issn.1671-251x.2016.05.001

    SUN Jiping. Explanations for part of monitoring and communication of Coal Mine Safety Regulations of 2016 Edition[J]. Industry and Mine Automation, 2016, 42(5): 1–8. doi: 10.13272/j.issn.1671-251x.2016.05.001
    邓兵, 孙正波, 杨乐, 等. 存在站址误差时的线性校正TDOA定位算法[J]. 西安电子科技大学学报: 自然科学版, 2017, 44(4): 106–111. doi: 10.3969/j.issn.1001-2400.2017.04.019

    DENG Bing, SUN Zhengbo, YANG Le, et al. TDOA localization with linear-correction in the presence of sensor position errors[J]. Journal of Xidian University, 2017, 44(4): 106–111. doi: 10.3969/j.issn.1001-2400.2017.04.019
    田强, 冯大政, 杨凡, 等. 基于线性校正的TOA联合同步与定位算法[J]. 系统工程与电子技术, 2018, 40(2): 245–249. doi: 10.3969/j.issn.1001-506X.2018.02.01

    TIAN Qiang, FENG Dazheng, YANG Fan, et al. Joint TOA-based synchronization and localization via linear-correction technique[J]. Systems Engineering and Electronics, 2018, 40(2): 245–249. doi: 10.3969/j.issn.1001-506X.2018.02.01
    徐琨, 刘宏立, 马子骥, 等. 容忍多径效应的无线传感网络测距算法[J]. 仪器仪表学报, 2017, 38(10): 2461–2468. doi: 10.3969/j.issn.0254-3087.2017.10.014

    XU Kun, LIU Hongli, MA Ziji, et al. Multipath-tolerant ranging algorithm in underground tunnel for wireless sensor networks[J]. Chinese Journal of Scientific Instrument, 2017, 38(10): 2461–2468. doi: 10.3969/j.issn.0254-3087.2017.10.014
    CHEN Hongyang, LIU Bin, HUANG Pei, et al. Mobility-assisted node localization based on TOA measurements without time synchronization in wireless sensor networks[J]. Mobile Networks and Applications, 2012, 17(1): 90–99. doi: 10.1007/s11036-010-0281-3
    WANG Gang and CHEN Hongyang. An importance sampling method for TDOA-based source localization[J]. IEEE Transactions on Wireless Communications, 2011, 10(5): 1560–1568. doi: 10.1109/TWC.2011.030311.101011
    李论, 张著洪, 丁恩杰, 等. 基于RSSI的煤矿巷道高精度定位算法研究[J]. 中国矿业大学学报, 2017, 46(1): 183–191, 200. doi: 10.13247/j.cnki.jcumt.000632

    LI Lun, ZHANG Zhuhong, DING Enjie, et al. Precision positioning algorithm in coal mine tunnel based on RSSI[J]. Journal of China University of Mining &Technology, 2017, 46(1): 183–191, 200. doi: 10.13247/j.cnki.jcumt.000632
    郝丽娜, 张秀均, 郁万里, 等. 基于RSS手指模的煤矿井下WLAN定位方法[J]. 传感器与微系统, 2012, 31(9): 46–49. doi: 10.13873/j.1000-97872012.09.020

    HAO Lina, ZHANG Xiujun, YU Wanli, et al. Underground coal mine WLAN localization algorithm based on RSS fingerprinting[J]. Transducer and Microsystem Technologies, 2012, 31(9): 46–49. doi: 10.13873/j.1000-97872012.09.020
    孙继平, 李晨鑫. 基于卡尔曼滤波和指纹定位的矿井TOA定位方法[J]. 中国矿业大学学报, 2014, 43(6): 1127–1133. doi: 10.13247/j.cnki.jcumt.000117

    SUN Jiping and LI Chenxin. Mine time of arrival positioning method based on Kalman filtering and fingerprint positioning[J]. Journal of China University of Mining &Technology, 2014, 43(6): 1127–1133. doi: 10.13247/j.cnki.jcumt.000117
    王红军, 周宇, 王伦文. 基于SVR-Kriging插值的矿井工人二维指纹定位数据库构建算法[J]. 电子与信息学报, 2017, 39(11): 2571–2578. doi: 10.11999/JEIT170058

    WANG Hongjun, ZHOU Yu, and WANG Lunwen. Establishment algorithm of two dimensional fingerprint database for mine workers based on SVR-Kriging interpolation[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2571–2578. doi: 10.11999/JEIT170058
    DUARTE M F, SARVOTHAM S, BARON D, et al. Distributed compressed sensing of jointly sparse signals[C]. Conference Record of the Thirty-Ninth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2005: 1537–1541. doi: 10.1109/ACSSC.2005.1600024.
    CANDES E J and TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203–4215. doi: 10.1109/TIT.2005.858979
    徐勇. 分布式压缩感知的算法及其应用研究[D]. [博士论文], 中国地质大学, 2015: 2–47.

    XU Yong. The research on algorithms of distributed compressed sensing and their applications[D]. [Ph.D. dissertation], China University of Geosciences, 2015: 2–47.
    GUO Jiateng, JIANG Jizhou, WU Lixin, et al. 3D modeling for mine roadway from laser scanning point cloud[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 4452–4455. doi: 10.1109/IGARSS.2016.7730160.
    徐志明, 田子建, 王文清, 等. 基于压缩感知的区域离散化矿井目标定位方法[J]. 工矿自动化, 2018, 44(8): 67–70. doi: 10.13272/j.issn.1671-251x.2018020005

    XU Zhiming, TIAN Zijian, WANG Wenqing, et al. Region discretization mine target positioning method based on compressed sensing[J]. Industry and Mine Automation, 2018, 44(8): 67–70. doi: 10.13272/j.issn.1671-251x.2018020005
    甘伟, 许录平, 张华, 等. 一种贪婪自适应压缩感知重构[J]. 西安电子科技大学学报: 自然科学版, 2012, 39(3): 50–57, 79. doi: 10.3969/j.issn.1001-2400.2012.03.008

    GAN Wei, XU Luping, ZHANG Hua, et al. Greedy adaptive recovery algorithm for compressed sensing[J]. Journal of Xidian University, 2012, 39(3): 50–57, 79. doi: 10.3969/j.issn.1001-2400.2012.03.008
    WANG Qun and LIU Zhiwen. A robust and efficient algorithm for distributed compressed sensing[J]. Computers & Electrical Engineering, 2011, 37(6): 916–926. doi: 10.1016/j.compeleceng.2011.09.008
    NEEDELL D and TROPP J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples[J]. Applied and Computational Harmonic Analysis, 2009, 26(3): 301–321. doi: 10.1016/j.acha.2008.07.002
  • 期刊类型引用(8)

    1. 李娜,刘关四,王志杰,丁克勤. 港口起重机械运行状态监测数据集成分析系统开发及应用. 中国特种设备安全. 2022(09): 1-4+30 . 百度学术
    2. 王林景,高志宇,姚鹏帅. 基于时空相关性的传感器网络数据压缩算法. 吉林大学学报(理学版). 2020(02): 337-342 . 百度学术
    3. 吴佳杰,朱荣钊,钟志峰. 无线传感器网络基于时空差分阈值Huffman数据压缩. 计算机测量与控制. 2019(02): 273-277 . 百度学术
    4. 应可珍,周贤年,毛科技,陈庆章. 一种改进区域生长法的WSN数据采集算法研究. 小型微型计算机系统. 2019(03): 567-572 . 百度学术
    5. 赵刚,饶元,朱军,李绍稳. 基于压缩感知的农情监测节点稀疏采样决策方法. 长江大学学报(自然科学版). 2019(01): 79-87+8-9 . 百度学术
    6. 段利国,朱丽,李晓伟,李爱萍. 使用改进灰色模型的WSN数据压缩方法. 北京邮电大学学报. 2018(02): 119-124 . 百度学术
    7. 李燕梅. 网络数据传输中冗余信息优化消除仿真. 计算机仿真. 2018(01): 370-373+440 . 百度学术
    8. 杨韬,童英华. 基于数据压缩技术的无线传感器监控系统的节能策略研究. 华北科技学院学报. 2017(04): 98-102 . 百度学术

    其他类型引用(15)

  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  2948
  • HTML全文浏览量:  902
  • PDF下载量:  64
  • 被引次数: 23
出版历程
  • 收稿日期:  2018-09-03
  • 修回日期:  2019-05-14
  • 网络出版日期:  2019-05-24
  • 刊出日期:  2019-10-01

目录

    /

    返回文章
    返回