高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于超节点理论的本体关系消冗算法

于洪涛 丁悦航 刘树新 黄瑞阳 谷允捷

于洪涛, 丁悦航, 刘树新, 黄瑞阳, 谷允捷. 一种基于超节点理论的本体关系消冗算法[J]. 电子与信息学报, 2019, 41(7): 1633-1640. doi: 10.11999/JEIT180793
引用本文: 于洪涛, 丁悦航, 刘树新, 黄瑞阳, 谷允捷. 一种基于超节点理论的本体关系消冗算法[J]. 电子与信息学报, 2019, 41(7): 1633-1640. doi: 10.11999/JEIT180793
Hongtao YU, Yuehang DING, Shuxin LIU, Ruiyang HUANG, Yunjie GU. Eliminating Structural Redundancy Based on Super-node Theory[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1633-1640. doi: 10.11999/JEIT180793
Citation: Hongtao YU, Yuehang DING, Shuxin LIU, Ruiyang HUANG, Yunjie GU. Eliminating Structural Redundancy Based on Super-node Theory[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1633-1640. doi: 10.11999/JEIT180793

一种基于超节点理论的本体关系消冗算法

doi: 10.11999/JEIT180793
基金项目: 国家自然科学基金(61521003, 61803384)
详细信息
    作者简介:

    于洪涛:男,1970年生,研究员,研究方向为网络安全、网络大数据分析

    丁悦航:女,1995年生,硕士生,研究方向为数据挖掘、知识图谱

    刘树新:男,1987年生,博士生,研究方向为复杂网络、链路预测、移动网络安全

    黄瑞阳:男,1986年生,副研究员,研究方向为网络大数据分析,大图挖掘

    谷允捷:男,1994年生,硕士生,研究方向为新型网络体系结构,数据挖掘与网络优化

    通讯作者:

    丁悦航 data_rabbit@163.com

  • 中图分类号: TP311.1

Eliminating Structural Redundancy Based on Super-node Theory

Funds: The National Natural Science Foundation of China (61521003, 61803384)
  • 摘要: 本体作为指导知识图谱数据构建的上层结构,在知识图谱技术中具有重要意义。本体在发展的过程中会形成结构上的冗余。现有的本体消冗方法无法处理含有等价关系的本体结构,只能针对单一类属关系进行冗余的检测与消除。该文针对含有等价关系的本体提出一种基于超节点理论的消冗算法,首先将相互等价的节点看作超节点,消除单一类属关系之间的的冗余;然后还原等价节点,消除等价关系与类属关系之间的冗余。在计算机生成网络和真实网络上的实验和分析表明,该算法能够准确识别关系冗余,具有较高的稳定性和综合性能。
  • 图  1  本体网络中的4种冗余

    图  2  本体消冗过程示意图

    图  3  3种算法在不同规模网络下的运行时间

    图  4  网络规模为1000时4种算法的查准率、查全率、调和指标的性能对比

    图  5  网络规模间隔为100时4种算法的查准率,查全率,调和指标的性能对比

    图  6  4种算法基于真实网络的查准率、查全率、调和指标性能对比

    表  1  消冗算法伪代码

     输入:本体网络${\text{M}}$
     输出:消冗后的本体网络${\text{R}}$
     (1) /*超节点的转化*/
     (2) ${\text{Me}} \leftarrow $$t({\text{M}} \!\otimes\! {{\text{M}}^{\rm{T}}})$/*抽取本体网络中的等价关系,存入${\text{Me}}$*/
     (3) ${{\rm Mr}_{ij}} \leftarrow $${\rm{bool}}\left(\sum\nolimits_k {({M_{ik}} \cdot {\rm{M}}{{\rm{e}}_{kj}}} + {\rm{M}}{{\rm{e}}_{ik}} \cdot {M_{kj}})\right) - {\rm{M}}{{\rm{e}}_{ij}}$/*将等价 关系转化为类属关系*/
     (4) /*传递冗余的消除*/
     (5) ${\text{R}} \leftarrow {\text{Mr}}$
     (6) $D[V\;],I[V\;] = \rm{FEDRR} (G(V,E))$/*用FEDRR算法求出网络中 每个节点的孩子集合$D[V\;]$与后代集合$I[V\;]$*/
     (7) for all $v \in V\;$ do
     (8)  for all $s \in I[v] \cap D[v]$ do
     (9)    delete $(s,v,R)$/*置${R_{sv}} = 0$*/
     (10)  end for
     (11) end for
     (12) /*等价-类属冗余的消除*/
     (13) ${\text{E}} \leftarrow $${\rm{Equiv(}}{\text{Me}}{\rm{)}}$/*$E$每行表示一种等价关系*/
     (14) ${S_{ij}} = {\rm{bool}}\left(\sum\nolimits_k {{E_{ik}} \cdot {R_{jk}} - 1} \right)$/*构造同源冗余*/
     (15) ${T_{ij}} = {\rm{bool}}\left(\sum\nolimits_k {{E_{ik}} \cdot {R_{kj}} - 1} \right)$/*构造同目标冗余*/
     (16) for $i$ from 1 to n do/*去除矩阵中等价关系与偏序关系之间 的冗余,n是矩阵大小*/
     (17)  for $j$ from 1 to n do
     (18)    if ${S_{ij}} > 1$ then/*去除同源冗余*/
     (19)     $\rm{Elim} \_Line({\text{E}}.{\rm{row}} (i),{\text{R}}.{\rm row}(j))$/*只保留节点$j$到 超节点$i$的一条边*/
     (20)    end if
     (21)    if ${T_{ij}} > 1$ then/*去除同目标冗余*/
     (22)     ${\rm{Elim\_Line}}({\text{E}}.{\rm{row}}(i),{\text{R}}.{\rm column}(j))$/*只保留超节点 $i$到节点$j$的一条边*/
     (23)   end if
     (24)  end for
     (25) end for
     (26) /*恢复等价关系*/
     (27) ${R_{ij}} \leftarrow {\rm{bool}}({R_{ij}} + {\rm{M}}{{\rm{e}}_{ij}})$
    下载: 导出CSV

    表  2  随机生成网络配置参数

    网络规模$N$网络个数$n$最大等价节点对数冗余边数
    配置11000100500(100,1000)
    配置2(100,1000)1000.5$N$(1,$N$)
    下载: 导出CSV
  • 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582–600. doi: 10.7544/issn1000-1239.2016.20148228

    LIU Qiao, LI Yang, DUAN Hong, et al. Knowledge graph construction techniques[J]. Journal of Computer Research and Development, 2016, 53(3): 582–600. doi: 10.7544/issn1000-1239.2016.20148228
    BORO D and BHUYAN Z. A game for shared ontology evolution[C]. Proceedings of the International Conference on Computing and Communication Systems, Shillong, India, 2018: 95–101.
    刘树新, 季新生, 刘彩霞, 等. 局部拓扑信息耦合促进网络演化[J]. 电子与信息学报, 2016, 38(9): 2180–2187. doi: 10.11999/JEIT151338

    LIU Shuxin, JI Xinsheng, LIU Caixia, et al. Information coupling of local topology promoting the network evolution[J]. Journal of Electronics &Information Technology, 2016, 38(9): 2180–2187. doi: 10.11999/JEIT151338
    XING Guangming, ZHANG Guoqiang, and CUI Licong. FEDRR: Fast, exhaustive detection of redundant hierarchical relations for quality improvement of large biomedical ontologies[J]. BioData Mining, 2016, 9: 31–42. doi: 10.1186/s13040-016-0110-8
    DENTLER K and CORNET R. Intra-axiom redundancies in SNOMED CT[J]. Artificial Intelligence in Medicine, 2015, 65(1): 29–34. doi: 10.1016/j.artmed.2014.10.003
    于娟, 熊振辉, 欧忠辉. 基于哈斯图的本体偏序关系消冗方法研究[J]. 情报学报, 2015, 34(3): 279–285. doi: 10.3772/j.issn.1000-0135.2015.003.006

    YU Juan, XIONG Zhenhui, and OU Zhonghui. Eliminating redundant ontology relations based on Hasse Diagram[J]. Journal of the China Society for Scientific and Technical Information, 2015, 34(3): 279–285. doi: 10.3772/j.issn.1000-0135.2015.003.006
    OCHS C, PERL Y, GELLER J, et al. An empirical analysis of ontology reuse in BioPortal[J]. Journal of Biomedical Informatics, 2017, 71: 165–177. doi: 10.1016/j.jbi.2017.05.021
    SHARP M E. Toward a comprehensive drug ontology: Extraction of drug-indication relations from diverse information sources[J]. Journal of Biomedical Semantics, 2017, 8: 2–12. doi: 10.1186/s13326-016-0110-0
    CHATTERJEE N, KAUSHIK N, GUPTA D, et al. Ontology merging: A practical perspective[J]. Information and Communication Technology for Intelligent Systems, 2018: 136–145. doi: 10.1007/978-3-319-63645-0_15
    JHA M, VELTRI P, GUZZI P H, et al. Network based algorithms for module extraction from RNASeq data: A quantitative assessment[C]. Proceedings of 2017 IEEE International Conference on Bioinformatics and Biomedicine, Kansas City, USA, 2017: 1312–1315.
    DORAN P, TAMMA V, and IANNONE L. Ontology module extraction for ontology reuse: An ontology engineering perspective[C]. Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management, Lisbon, Portugal, 2007: 61–70.
    ABEYSINGHE R, HINDERER E W, MOSELEY H N B, et al. Auditing subtype inconsistencies among gene ontology concepts[C]. Proceedings of 2017 IEEE International Conference on Bioinformatics and Biomedicine, Kansas City, USA, 2017: 1242–1245.
    DIETZE F, VALDEZ A C, KAROFF J, et al. That’s so meta! Usability of a hypergraph-based discussion model[C]. Proceedings of the 8th International Conference on Digital Human Modeling. Applications in Health, Safety, Ergonomics, and Risk Management: Health and Safety, Vancouver, Canada, 2017: 248–258.
    WARSHALL S. A theorem on boolean matrices[J]. Journal of the ACM (JACM) , 1962, 9(1): 11–12. doi: 10.1145/321105.321107
    刘树新, 季新生, 刘彩霞, 等. 一种信息传播促进网络增长的网络演化模型[J]. 物理学报, 2014, 63(15): 158902. doi: 10.7498/aps.63.158902

    LIU Shuxin, JI Xinsheng, LIU Caixia, et al. A complex network evolution model for network growth promoted by information transmission[J]. Acta Physica Sinica, 2014, 63(15): 158902. doi: 10.7498/aps.63.158902
    徐雷. 本体网络结构及其演化研究[D]. [博士论文], 武汉大学, 2014.

    XU Lei. A research on the structure of ontology networks and its evolution[D]. [Ph.D. dissertation], Wuhan University, 2014.
    RASKIN R G and PAN M J. Knowledge representation in the semantic web for Earth and environmental terminology (SWEET)[J]. Computers & Geosciences, 2005, 31(9): 1119–1125. doi: 10.1016/j.cageo.2004.12.004
    SAVIĆ M, IVANOVIĆ M, and JAIN L C. Complex Networks in Software, Knowledge, and Social Systems[M]. Cham: Springer, 2019: 143–175.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  2066
  • HTML全文浏览量:  870
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-09
  • 修回日期:  2019-02-25
  • 网络出版日期:  2019-03-04
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回