高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于粒子群优化的对抗样本生成算法

钱亚冠 卢红波 纪守领 周武杰 吴淑慧 云本胜 陶祥兴 雷景生

钱亚冠, 卢红波, 纪守领, 周武杰, 吴淑慧, 云本胜, 陶祥兴, 雷景生. 基于粒子群优化的对抗样本生成算法[J]. 电子与信息学报, 2019, 41(7): 1658-1665. doi: 10.11999/JEIT180777
引用本文: 钱亚冠, 卢红波, 纪守领, 周武杰, 吴淑慧, 云本胜, 陶祥兴, 雷景生. 基于粒子群优化的对抗样本生成算法[J]. 电子与信息学报, 2019, 41(7): 1658-1665. doi: 10.11999/JEIT180777
Yaguan QIAN, Hongbo LU, Shouling JI, Wujie ZHOU, Shuhui WU, Bensheng YUN, Xiangxing TAO, Jingsheng LEI. Adversarial Example Generation Based on Particle Swarm Optimization[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1658-1665. doi: 10.11999/JEIT180777
Citation: Yaguan QIAN, Hongbo LU, Shouling JI, Wujie ZHOU, Shuhui WU, Bensheng YUN, Xiangxing TAO, Jingsheng LEI. Adversarial Example Generation Based on Particle Swarm Optimization[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1658-1665. doi: 10.11999/JEIT180777

基于粒子群优化的对抗样本生成算法

doi: 10.11999/JEIT180777
基金项目: 浙江省自然科学基金(LY17F020011, LY18F020012),浙江省公益技术应用研究项目(LGG19F030001),国家自然科学基金(61772466, 61672337, 11771399)
详细信息
    作者简介:

    钱亚冠:男,1976年生,副教授,研究方向为机器学习安全、计算机视觉

    卢红波:男,1993年生,硕士生,研究方向为机器学习安全

    纪守领:男,1986年生,研究员,主要研究方向为人工智能安全、数据驱动安全与隐私保护

    周武杰:男,1983年生,副教授,主要研究方向为机器视觉

    吴淑慧:女,1975年生,讲师,研究领域为深度神经网络

    云本胜:男,1980年生,讲师,研究领域为机器学习与数据挖掘

    陶祥兴:男,1966年生,教授,主要研究领域为信号处理与金融数据分析

    雷景生:男,1967年生,教授,主要研究领域为机器学习与大数据处理

    通讯作者:

    钱亚冠 QianYaGuan@zust.edu.cn

  • 中图分类号: TP309.2

Adversarial Example Generation Based on Particle Swarm Optimization

Funds: Zhejiang Natural Science Foundation (LY17F020011, LY18F020012), The Scientific Project of Zhejiang Provincial Science and Technology Department (LGG19F030001), The National Natural Science Foundation of China(61772466, 61672337, 11771399)
  • 摘要: 随着机器学习被广泛的应用,其安全脆弱性问题也突显出来。该文提出一种基于粒子群优化(PSO)的对抗样本生成算法,揭示支持向量机(SVM)可能存在的安全隐患。主要采用的攻击策略是篡改测试样本,生成对抗样本,达到欺骗SVM分类器,使其性能失效的目的。为此,结合SVM在高维特征空间的线性可分的特点,采用PSO方法寻找攻击显著性特征,再利用均分方法逆映射回原始输入空间,构建对抗样本。该方法充分利用了特征空间上线性模型上易寻优的特点,同时又利用了原始输入空间篡改数据的可解释性优点,使原本难解的优化问题得到实现。该文对2个公开数据集进行实验,实验结果表明,该方法通过不超过7%的小扰动量生成的对抗样本均能使SVM分类器失效,由此证明了SVM存在明显的安全脆弱性。
  • 图  1  手写体数字图像示例

    图  2  人脸图像示例

    图  3  “三庭五眼”的人脸分割示例

    图  4  不同扰动程度的图像示例

    图  5  人脸扰动前后的图像示例

    图  6  不同扰动量下的对象示例

    表  1  粒子群寻优(PSO)算法

     输入:$A$ //特征子集
     输出:$B$ //显著性特征
     (1) $d = \left| A \right|, B = \phi $ //$A = ({a^{(1)}}, {a^{(2)}}, ·\!·\!· , {a^{(d)}})$
     (2) FOR $ i \leftarrow 1, 2, ·\!·\!· , N $ DO
     (3)   ${{\text{s}}_i} \leftarrow {\rm rand}(d), {{\text{v}}_i} \leftarrow {\rm rand}(d)$ //初始化$N$个粒子的位置和
    速度
     (4)   ${{\text{p}}_i} \leftarrow {{\text{s}}_i}$ //${{\text{p}}_i}$为第$i$个粒子的当前最佳位置
     (5) END FOR
     (6) ${{\text{p}}_g} \leftarrow {{\text{p}}_j}$,其中$j \leftarrow \arg {{\rm max}_i} \;{\rm{fit}}({{\text{p}}_i}), i = 1, 2, ·\!·\!· , N$ //${{\text{p}}_g}$为所有
    粒子的当前最佳位置
     (7) FOR $ k \leftarrow 1, 2, ·\!·\!· , M $ DO //$M$为迭代次数
     (8)   FOR $i \leftarrow 1, 2, ·\!·\!· , N$ DO
     (9)     $\begin{gathered} {{\text{v}}_{i + 1}} \leftarrow {{\text{v}}_i} + {c_1}{r_1}({{\text{p}}_i} - {{\text{s}}_i}) \\ \quad\ \ + {c_2}{r_2}({{\text{p}}_g} - {{\text{s}}_i}) \\ \end{gathered} $
     (10)      ${{\text{s}}_{i + 1}} \leftarrow {{\text{s}}_i} + {{\text{v}}_{i + 1}}$
     (11)     IF ${\rm{fit}}({\text{s}}{}_{i + 1}) > {\rm{fit}}({\text{p}}{}_{i + 1}) $ THEN
     (12)      ${{\text{p}}_i} \leftarrow {{\text{s}}_{i + 1}}$
     (13)    END IF
     (14) END FOR
     (15) ${{\text{p}}_g} \leftarrow {{\text{p}}_j}$ 其中$j \leftarrow \arg {{\rm max}_i} \;{\rm{fit}}({{\text{p}}_i})$
     (16) END FOR
     (17) FOR $i \leftarrow 1, 2, ·\!·\!· , d $ DO
     (18) IF ${{\text{p}}_{{}_{gi}}} > 0.5 $ THEN
     (19)     $B \leftarrow B \cup \{ {a^{(i)}}\} $ //${a^{(i)}}$是${{\text{p}}_{{}_{gi}}}$对应的特征
     (20)  END IF
     (21) END FOR
     (22) RETURN $B$
    下载: 导出CSV

    表  2  输入空间扰动算法

     输入:$A$ //${\text{w}}$从大到小排序后对应的特征
      $B$ //显著性特征
      ${{\text{X}}_0}$ //原始样本
     输出:$\Delta {\text{X}} $ //对抗样本的扰动
     (1) $N = \left| B \right|, \Delta {\text{X}} = {\text{0}}$ //$N$为$B$的特征数,$\Delta {\text{X}} $的大小与${{\text{X}}_0}$相
    同,且所有特征的初始值为0
     (2) FOR $ i \leftarrow 1, 2, ·\!·\!· , N$ DO
     (3)    $k \leftarrow {\rm index}({b^{(i)}})$ //$k$为$B = ({b^{(1)}}, {b^{(2)}}, ·\!·\!· , {b^{(n)}})$在特征空
    间的特征索引
     (4)    $I \leftarrow {\rm component}(k)$ // $I$为特征空间的第$k$个特征对应
    的“输入空间特征集”
     (5)   $\sigma \leftarrow \delta (\theta , \lambda , I, {{\text{X}}_0})$//$\delta ( \cdot )$由式(11)得到
     (6)   FOR $j \leftarrow 1, 2, ·\!·\!· , \left| I \right| $ DO
     (7)     $\Delta {\text{X}}(j) \leftarrow \Delta {\text{X}}(j) + \sigma $
     (8)   END FOR
     (9) END FOR
     (10) RETURN $\Delta {\text{X}} $ //对抗样本的扰动
    下载: 导出CSV

    表  3  测试集中各个手写体的分类准确率(%)

    手写体数字0123456789
    准确率98.8898.9495.1695.7496.1392.7197.1894.6593.9493.76
    下载: 导出CSV

    表  4  不同扰动量下各类手写体数字的平均分类正确率(%)

    手写体数字扰动前1%扰动3%扰动5%扰动7%扰动
    098.8895.3275.3737.4410.17
    198.9496.4831.9313.571.21
    295.1684.5472.1464.9358.65
    395.7481.7667.8950.2230.74
    496.1392.4442.988.760.39
    592.7189.3855.7318.375.65
    697.1894.6370.6430.5812.33
    794.6591.7169.8732.4317.47
    894.6594.1378.2135.3813.58
    993.9490.8552.7327.646.53
    下载: 导出CSV

    表  5  不同扰动比例下各对象的平均分类正确率(%)

    人脸序号1%扰动3%扰动5%扰动7%扰动
    195.1290.0268.8238.63
    287.6871.1354.9829.22
    391.1981.5758.1329.16
    489.4375.2752.2921.09
    590.7879.2743.5526.87
    687.9171.6260.1421.33
    783.2641.1215.678.31
    892.4370.2247.9329.83
    991.3375.7146.6228.11
    1094.6681.7357.4530.13
    1182.6368.2030.7910.32
    1298.7881.1766.0537.16
    1372.6557.2733.486.37
    1485.1763.3349.787.91
    1597.589.8570.2129.84
    下载: 导出CSV
  • BARRENO M, NELSON B, SEARS R, et al. Can machine learning be secure?[C]. Proceedings of 2006 ACM Symposium on Information, Computer and Communications Security, Taipei, China, 2006: 16–25. doi: 10.1145/1128817.1128824.
    LI Pan, ZHAO Wentao, LIU Qiang, et al. Security issues and their countermeasuring techniques of machine learning: A survey[J]. Journal of Frontiers of Computer Science & Technology, 2018, 12(2): 171–184.
    SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[EB/OL]. http://arxiv.org/abs/1312.6199v4, 2014.
    PAPERNOT N, MCDANIEL P, JHA S, et al. The limitations of deep learning in adversarial settings[C]. Proceedings of 2016 IEEE European Symposium on Security and Privacy, Saarbrucken, Germany, 2016: 372–387. doi: 10.1109/EuroSP.2016.36.
    PAPERNOT N, MCDANIEL P, GOODFELLOW I, et al. Practical black-box attacks against machine learning[EB/OL]. http://arxiv.org/abs/1602.02697v4, 2017.
    AKHTAR N and MIAN A. Threat of adversarial attacks on deep learning in computer vision: A survey[J]. IEEE Access, 2018, 6: 14410–14430. doi: 10.1109/ACCESS.2018.2807385
    CORTES C and VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273–297. doi: 10.1007/BF00994018
    BIGGIO B, NELSON B, and LASKOV P. Support vector machines under adversarial label noise[C]. Proceedings of the 3rd Asian Conference on Machine Learning, Taoyuan, China, 2011, 20: 97–112.
    BIGGIO B, NELSON B, and LASKOV P. Poisoning attacks against support vector machines[EB/OL]. http://arxiv.org/abs/1206.6389v3, 2013.
    MEI Shike and ZHU Xiaojin. Using machine teaching to identify optimal training-set attacks on machine learners[C]. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, USA, 2015: 2871–2877.
    CHEN Zhipeng, TONDI B, LI Xiaolong, et al. A gradient-based pixel-domain attack against SVM detection of global image manipulations[C]. Proceedings of 2017 IEEE Workshop on Information Forensics and Security, Rennes, France, 2017: 1–6. doi: 10.1109/WIFS.2017.8267668.
    BIGGIO B, CORONA I, MAIORCA D, et al. Evasion attacks against machine learning at test time[EB/OL]. http://arxiv.org/abs/1708.06131, 2013.
    GOLLAND P. Discriminative direction for kernel classifiers[C]. Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, Vancouver, British Columbia, Canada, 2001: 745–752.
    AMRAEE S, VAFAEI A, JAMSHIDI K, et al. Abnormal event detection in crowded scenes using one-class SVM[J]. Signal, Image and Video Processing, 2018, 12(6): 1115–1123. doi: 10.1007/s11760-018-1267-z
    BENMAHAMED Y, TEGUAR M, and BOUBAKEUR A. Application of SVM and KNN to Duval pentagon 1 for transformer oil diagnosis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(6): 3443–3451. doi: 10.1109/TDEI.2017.006841
    SCHNALL A and HECKMANN M. Feature-space SVM adaptation for speaker adapted word prominence detection[J]. Computer Speech & Language, 2019, 53: 198–216. doi: 10.1016/j.csl.2018.06.001
    ZHAO Rui and MAO Kezhi. Semi-random projection for dimensionality reduction and extreme learning machine in high-dimensional space[J]. IEEE Computational Intelligence Magazine, 2015, 10(3): 30–41. doi: 10.1109/MCI.2015.2437316
    EBERHART R and KENNEDY J. A new optimizer using particle swarm theory[C]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 2002: 39–43. doi: 10.1109/MHS.1995.494215.
    SHI Y and EBERHART R. A modified particle swarm optimizer[C]. Proceeding of 1998 IEEE International Conference on Evolutionary Computation, World Congress on Computational Intelligence, Anchorage, USA, 1998: 69–73. doi: 10.1109/ICEC.1998.699146.
    LIN S W, YING K C, CHEN S C, et al. Particle swarm optimization for parameter determination and feature selection of support vector machines[J]. Expert Systems with Applications, 2008, 35(4): 1817–1824. doi: 10.1016/j.eswa.2007.08.088
    LECUN Y, CORTES C, and BURGES C J C. The MNIST database of handwritten digits[EB/OL]. http://yann.lecun.com/exdb/mnist/, 2010.
    YALE. The Yale face database[OL]. http://cvc.cs.yale.edu/cvc/projects/yalefaces/yalefaces.html, 1997.
    何光辉, 唐远炎, 房斌, 等. 图像分割方法在人脸识别中的应用[J]. 计算机工程与应用, 2010, 46(28): 196–198. doi: 10.3778/j.issn.1002-8331.2010.28.055

    HE Guanghui, TANG Yuanyan, FANG Bin, et al. Image partition method in face recognition[J]. Computer Engineering and Applications, 2010, 46(28): 196–198. doi: 10.3778/j.issn.1002-8331.2010.28.055
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  3934
  • HTML全文浏览量:  1168
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-06
  • 修回日期:  2019-01-28
  • 网络出版日期:  2019-02-15
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回