高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合字典学习技术的ISAR稀疏成像方法

胡长雨 汪玲 朱栋强

胡长雨, 汪玲, 朱栋强. 结合字典学习技术的ISAR稀疏成像方法[J]. 电子与信息学报, 2019, 41(7): 1735-1742. doi: 10.11999/JEIT180747
引用本文: 胡长雨, 汪玲, 朱栋强. 结合字典学习技术的ISAR稀疏成像方法[J]. 电子与信息学报, 2019, 41(7): 1735-1742. doi: 10.11999/JEIT180747
Changyu HU, Ling WANG, Dongqiang ZHU. Sparse ISAR Imaging Exploiting Dictionary Learning[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1735-1742. doi: 10.11999/JEIT180747
Citation: Changyu HU, Ling WANG, Dongqiang ZHU. Sparse ISAR Imaging Exploiting Dictionary Learning[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1735-1742. doi: 10.11999/JEIT180747

结合字典学习技术的ISAR稀疏成像方法

doi: 10.11999/JEIT180747
基金项目: 国家自然科学基金(61871217),江苏省研究生科研与实践创新计划(KYCX18_0291)
详细信息
    作者简介:

    胡长雨:男,1989年生,博士生,研究方向为逆合成孔径雷达稀疏成像

    汪玲:女,1977年生,教授,博士生导师,研究方向为合成孔径成像、逆合成孔径成像、无源成像、压缩感知成像和超分辨成像

    朱栋强:男,1993年生,硕士生,研究方向为基于压缩感知的ISAR成像

    通讯作者:

    汪玲 tulip_wling@nuaa.edu.cn

  • 中图分类号: TN957.52

Sparse ISAR Imaging Exploiting Dictionary Learning

Funds: The National Natural Science Foundation of China (61871217), The Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_0291)
  • 摘要: 鉴于稀疏ISAR成像方法的成像质量受到待成像场景的稀疏表示不准确的限制,该文将字典学习(DL)技术引入到ISAR稀疏成像中,以提升目标成像质量。该文给出基于离线DL和在线DL两种ISAR稀疏成像方法。前者通过已有同类目标ISAR图像进行学习,获得更优稀疏表示,后者在成像过程中从现有数据中通过优化获得稀疏表示。仿真和实测ISAR数据成像结果表明,结合离线DL和在线DL的成像方法均可获得比现有方法更优的成像结果,离线DL成像优于在线DL成像,而且前者计算效率优于后者。
  • 图  1  飞机目标全数据采用RD方法和50%数据采用CS 方法的成像结果

    图  2  卫星目标全数据采用RD方法和25%数据采用CS方法的成像结果

    表  1  飞机目标成像性能评价

    成像方法FAMDRRMSETCRENTIC运算时间(s)
    OMP891650.192357.02035.46318.0294116.1757
    GKF861030.204455.59305.38008.14491.0058e3
    在线DL74750.153557.56295.38078.210352.5790
    离线DL64700.141159.03225.36858.286824.8510
    下载: 导出CSV

    表  2  卫星目标成像性能评价

    成像方法FAMDRRMSETCRENTIC运算时间(s)
    OMP1465070.373663.29566.42099.809956.1323
    GKF1404780.255065.33826.374010.38431.6485e4
    在线DL1421610.176565.91636.60989.503919.2178
    离线DL1221470.156467.25066.61379.60944.1543
    下载: 导出CSV
  • PRICKETT M J and CHEN C C. Principles of inverse synthetic aperture radar /ISAR/ imaging[C]. IEEE Electronics and Aerospace Systems Conference, New York, USA, 1980: 340–345.
    GENG Minming, TIAN Ye, FANG Jian, et al. Implementation of GPU-based iterative shrinkage-thresholding algorithm in sparse microwave imaging[C]. Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 3863–3866.
    CETIN M and KARL W C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization[J]. IEEE Transactions on Image Processing, 2001, 10(4): 623–631. doi: 10.1109/83.913596
    汪玲, 朱栋强, 马凯莉, 等. 空间目标卡尔曼滤波稀疏成像方法[J]. 电子与信息学报, 2018, 40(4): 846–852. doi: 10.11999/JEIT170319

    WANG Ling, ZHU Dongqiang, MA Kaili, et al. Sparse imaging of space targets using Kalman filter[J]. Journal of Electronics &Information Technology, 2018, 40(4): 846–852. doi: 10.11999/JEIT170319
    徐宗本, 吴一戎, 张冰尘, 等. 基于L1/2正则化理论的稀疏雷达成像[J]. 科学通报, 2018, 63(14): 1306–1319. doi: 10.1360/N972018-00372

    XU Zongben, WU Yirong, ZHANG Bingchen, et al. Sparse radar imaging based on L1/2 regularization theory[J]. Chinese Science Bulletin, 2018, 63(14): 1306–1319. doi: 10.1360/N972018-00372
    HASANKHAN M J, SAMADI S, and ÇETIN M. Sparse representation-based algorithm for joint SAR image formation and autofocus[J]. Signal, Image and Video Processing, 2017, 11(4): 589–596. doi: 10.1007/s11760-016-0998-y
    BI Hui, BI Guoan, ZHANG Bingchen, et al. Complex-image-based sparse SAR imaging and its equivalence[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5006–5014. doi: 10.1109/TGRS.2018.2803802
    SAMADI S, CETIN M, and MASNADI-SHIRAZI M A. Sparse representation-based synthetic aperture radar imaging[J]. IET Radar, Sonar & Navigation, 2011, 5(2): 182–193. doi: 10.1049/iet-rsn.2009.0235
    WANG Ling, LOFFELD O, MA Kaili, et al. Sparse ISAR imaging using a greedy kalman filtering approach[J]. Signal Processing, 2017, 138: 1–10. doi: 10.1016/j.sigpro.2017.03.002
    DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    BARANIUK R and STEEGHS P. Compressive radar imaging[C]. Proceedings of 2007 IEEE Radar Conference, Boston, USA, 2007: 128–133.
    WANG Lu, ZHAO Lifan, and BI Guoan. Structured sparse representation based ISAR imaging[C]. Proceedings of the 2014 15th International Radar Symposium, Gdansk, Poland, 2014: 1–5.
    YANKELEVSKY Y and ELAD M. Dictionary learning for high dimensional graph signals[C]. Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, Canada, 2018: 4669–4673.
    YANKELEVSKY Y and ELAD M. Structure-aware classification using supervised dictionary learning[C]. Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, USA, 2017: 4421–4425.
    SOĞANLUI A and ÇETIN M. Dictionary learning for sparsity-driven SAR image reconstruction[C]. Proceedings of 2014 IEEE International Conference on Image Processing, Paris, France, 2014: 1693–1697.
    JIANG Changhui, ZHANG Qiyang, FAN Rui, et al. Super-resolution CT image reconstruction based on dictionary learning and sparse representation[J]. Scientific Reports, 2018, 8(1): 8799. doi: 10.1038/s41598-018-27261-z
    AHARON M, ELAD M, and BRUCKSTEIN A. rmK-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311–4322. doi: 10.1109/TSP.2006.881199
    PATI Y C, REZAIIFAR R, and KRISHNAPRASAD P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[C]. Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 1993: 40–44.
    WANG Ling and LOFFELD O. ISAR imaging using a null space ℓ1minimizing Kalman filter approach[C]. Proceedings of the 2016 4th International Workshop on Compressed Sensing Theory and Its Applications to Radar, Sonar and Remote Sensing, Aachen, Germany, 2016: 232–236.
    AHARON M and ELAD M. Sparse and redundant modeling of image content using an image-signature-dictionary[J]. SIAM Journal on Imaging Sciences, 2008, 1(3): 228–247. doi: 10.1137/07070156X
    ZHU Daiyin, WANG Ling, YU Yusheng, et al. Robust ISAR range alignment via minimizing the entropy of the average range profile[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 204–208. doi: 10.1109/LGRS.2008.2010562
    汪玲, 朱岱寅, 朱兆达. 基于SAR实测数据的舰船成像研究[J]. 电子与信息学报, 2007, 29(2): 401–404.

    WANG Ling, ZHU Daiyin, and ZHU Zhaoda. Study on ship imaging using SAR real data[J]. Journal of Electronics &Information Technology, 2007, 29(2): 401–404.
    HU Changyu, WANG Ling, and LOFFELD O. Inverse synthetic aperture radar imaging exploiting dictionary learning[C]. Proceedings of 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 1084–1088.
    LOFFELD O, ESPETER T, and CONDE M H. From weighted least squares estimation to sparse CS reconstruction[C]. Proceedings of the 2015 3rd International Workshop on Compressed Sensing Theory and Its Applications to Radar, Sonar and Remote Sensing, Pisa, Italy, 2015: 149–153.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  2433
  • HTML全文浏览量:  1217
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-23
  • 修回日期:  2019-01-21
  • 网络出版日期:  2019-02-14
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回