高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于张量分解的卫星遥测缺失数据预测算法

马友 贾树泽 赵现纲 冯小虎 范存群 朱爱军

马友, 贾树泽, 赵现纲, 冯小虎, 范存群, 朱爱军. 基于张量分解的卫星遥测缺失数据预测算法[J]. 电子与信息学报, 2020, 42(2): 403-409. doi: 10.11999/JEIT180728
引用本文: 马友, 贾树泽, 赵现纲, 冯小虎, 范存群, 朱爱军. 基于张量分解的卫星遥测缺失数据预测算法[J]. 电子与信息学报, 2020, 42(2): 403-409. doi: 10.11999/JEIT180728
You MA, Shuze JIA, Xiangang ZHAO, Xiaohu FENG, Cunqun FAN, Aijun ZHU. Missing Telemetry Data Prediction Algorithm via Tensor Factorization[J]. Journal of Electronics & Information Technology, 2020, 42(2): 403-409. doi: 10.11999/JEIT180728
Citation: You MA, Shuze JIA, Xiangang ZHAO, Xiaohu FENG, Cunqun FAN, Aijun ZHU. Missing Telemetry Data Prediction Algorithm via Tensor Factorization[J]. Journal of Electronics & Information Technology, 2020, 42(2): 403-409. doi: 10.11999/JEIT180728

基于张量分解的卫星遥测缺失数据预测算法

doi: 10.11999/JEIT180728
基金项目: 国家自然科学基金(61602126),国家863计划项目(2011AA12A104)
详细信息
    作者简介:

    马友:男,1982年生,副研究员,主要研究方向为服务推荐与机器学习

    贾树泽:男,1982年生,高级工程师,主要研究方向为卫星故障诊断

    赵现纲:男,1979年生,研究员,主要研究方向为卫星通讯技术

    冯小虎:男,1973年生,研究员,主要研究方向为航天器精细化管理

    范存群:男,1986年生,高级工程师,主要研究方向为卫星资料同化

    朱爱军:男,1970年生,研究员,主要研究方向为卫星系统工程

    通讯作者:

    范存群 fancq@cma.gov.cn

  • 中图分类号: TN927; TP391

Missing Telemetry Data Prediction Algorithm via Tensor Factorization

Funds: The National Natural Science Foundation of China (61602126), The National 863 Plan Project (2011AA12A104)
  • 摘要:

    卫星健康状况监测是卫星安全保障的重要基础,而卫星遥测数据又是卫星健康状况分析的唯一数据来源。因此,卫星遥测缺失数据的准确预测是卫星健康分析的重要前瞻性手段。针对极轨卫星多组成系统、多仪器载荷以及多监测指标形成的高维数据特点,该文提出一种基于张量分解的卫星遥测缺失数据预测算法(TFP),以解决当前数据预测方法大多面向低维数据或只能针对特定维度的不足。所提算法将遥测数据中的系统、载荷、指标以及时间等多维因素作为统一的整体进行张量建模,以完整、准确地表达数据的高维特征;其次,通过张量分解计算数据模型的成分特征,通过成分特征可对张量模型进行准确重构,并在重构过程中对缺失数据进行准确预测;最后,提出一种高效的优化算法实现相关的张量计算,并对算法中最优参数设置进行严格的理论推导。实验结果表明,所提算法的预测准确度优于当前大部分预测算法。

  • 图  1  预测误差在不同区间的分布

    图  2  R取值对预测精度的影响

     算法1:TFP算法
     输入:数据集$ {\cal X}\in {{\mathbb{R}}^{{{I}_{1}}\times {{I}_{2}}\times \cdots \times {{I}_{N}}}}$;
     输出:训练后的成分矩阵$ {{ A}^{\left(j \right)}}$ (j=1 to N)
     随机初始化成分矩阵$ {{ A}^{\left( j \right)}}$(j=1 to N)
     Repeat
      For each $ { A}_{{i_j}r}^{\left( j \right)}\left( {1 \le j \le N,1 \le {i_j} \le {I_j},1 \le r \le R} \right)$
       If $ g_{{i_j}r}^{\left( j \right)}{|_t} \cdot g_{{i_j}r}^{\left( j \right)}{|_{t - 1}} > 0$
        $ \delta _{ {i_j}r}^{\left( j \right)}{|_t} = {\rm{min} }\left( {\delta _{ {i_j}r}^{\left( j \right)}{|_{t - 1} } \cdot {\eta ^ + },{\rm{MaxSize}}} \right)$
        $ { A}_{{i_j}r}^{\left( j \right)}{|_{t + 1}} = { A}_{{i_j}r}^{\left( j \right)}{|_t} - {\rm{sign}}\left( {g_{{i_j}r}^{\left( j \right)}{|_t}} \right) \cdot \delta _{{i_j}r}^{\left( j \right)}{|_t}$
       Else If $ g_{{i_j}r}^{\left( j \right)} \cdot g_{{i_j}r}^{\left( j \right)}{\rm{'}} < 0$
        $ \delta _{ {i_j}r}^{\left( j \right)}{|_t} = {\rm{max} }\left( {\delta _{ {i_j}r}^{\left( j \right)}{|_{t - 1} } \cdot {\eta ^ - },{\rm {MinSize}}} \right)$
        If $ L{|_t} > L{|_{t - 1}}$
        $ { A}_{{i_j}r}^{\left( j \right)}{|_{t + 1}} = { A}_{{i_j}r}^{\left( j \right)}{|_t} + {\rm{sign}}\left( {g_{{i_j}r}^{\left( j \right)}{|_{t - 1}}} \right) \cdot \delta _{{i_j}r}^{\left( j \right)}{|_{t - 1}}$
         $ L{|_t} = 0$
        End If
       Else
        $ \delta _{{i_j}r}^{\left( j \right)}{|_t} = \delta _{{i_j}r}^{\left( j \right)}{|_{t - 1}}$
        $ { A}_{{i_j}r}^{\left( j \right)}{|_{t + 1}} = { A}_{{i_j}r}^{\left( j \right)}{|_t} - {\rm{sign}}\left( {g_{{i_j}r}^{\left( j \right)}{|_t}} \right) \cdot \delta _{{i_j}r}^{\left( j \right)}{|_t}$
       End If
      End For
     Until $ L \le \varepsilon $ or maximum iterations exhausted
    下载: 导出CSV

    表  1  TFP算法与其它5个方法的对比

    方法数据密度5%数据密度10%数据密度20%数据密度50%
    MAERMSEMAERMSEMAERMSEMAERMSE
    NMF0.61751.57890.60071.54850.59861.52330.48701.4847
    PMF0.56871.47920.49841.28420.44921.18550.40061.0820
    UPCC0.62041.40100.55131.31390.48751.23430.31141.0749
    IPCC0.68861.42780.59081.32450.44541.20940.28951.1724
    TA0.62391.40580.53601.30450.44961.20300.21061.0988
    TFP0.3815 0.9469 0.3073 0.7597 0.2270 0.5619 0.1235 0.3150
    下载: 导出CSV
  • 李平, 张路遥, 曹霞, 等. 基于潜在主题的混合上下文推荐算法[J]. 电子与信息学报, 2018, 40(4): 957–963. doi: 10.11999/JEIT170623

    LI Ping, ZHANG Luyao, CAO Xia, et al. Hybrid context recommendation algorithm based on latent topic[J]. Journal of Electronics &Information Technology, 2018, 40(4): 957–963. doi: 10.11999/JEIT170623
    CHEN I F and LU Chijie. Sales forecasting by combining clustering and machine-learning techniques for computer retailing[J]. Neural Computing and Applications, 2017, 28(9): 2633–2647. doi: 10.1007/s00521-016-2215-x
    MA You, WANG Shangguang, HUNG P C K, et al. A highly accurate prediction algorithm for unknown Web service QoS values[J]. IEEE Transactions on Services Computing, 2016, 9(4): 511–523. doi: 10.1109/TSC.2015.2407877
    马友, 王尚广, 孙其博, 等. 一种综合考虑主客观权重的Web服务QoS度量算法[J]. 软件学报, 2014, 25(11): 2473–2485. doi: 10.13328/j.cnki.jos.004508

    MA You, WANG Shangguang, SUN Qibo, et al. Web service quality metric algorithm employing objective and subjective weight[J]. Journal of Software, 2014, 25(11): 2473–2485. doi: 10.13328/j.cnki.jos.004508
    DING Shuai, LI Yeqing, WU Desheng, et al. Time-aware cloud service recommendation using similarity-enhanced collaborative filtering and ARIMA model[J]. Decision Support Systems, 2018, 107: 103–115. doi: 10.1016/j.dss.2017.12.012
    KUANG Li, YU Long, HUANG Lan, et al. A personalized QoS prediction approach for CPS service recommendation based on reputation and location-aware collaborative filtering[J]. Sensors, 2018, 18(5): 1556. doi: 10.3390/s18051556
    COLOMO-PALACIOS R, GARCÍA-PEÑALVO F J, STANTCHEV V, et al. Towards a social and context-aware mobile recommendation system for tourism[J]. Pervasive and Mobile Computing, 2017, 38: 505–515. doi: 10.1016/j.pmcj.2016.03.001
    IGEL C and HÜSKEN M. Improving the Rprop learning algorithm[C]. The 2nd International Symposium on Neural Computation, Berlin, Germany, 2000: 115–121.
    GLIGORIJEVIĆ V, PANAGAKIS Y, and ZAFEIRIOU S. Non-negative matrix factorizations for multiplex network analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(4): 928–940. doi: 10.1109/TPAMI.2018.2821146
    MA Wenping, WU Yue, and GONG Maoguo. Local probabilistic matrix factorization for personal recommendation[C]. The 13th International Conference on Computational Intelligence and Security, Hong Kong, China, 2017: 97–101. doi: 10.1109/CIS.2017.00029
    SHAO Lingshuang, ZHANG Jing, WEI Yong, et al. Personalized QoS prediction for web services via collaborative filtering[C]. The IEEE International Conference on Web Services, Salt Lake City, USA, 2007: 439–446. doi: 10.1109/ICWS.2007.140.
    SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]. The 10th International Conference on World Wide Web, Hong Kong, China, 2001: 285–295. doi: 10.1145/371920.372071.
    KANG M G and KATSAGGELOS A K. General choice of the regularization functional in regularized image restoration[J]. IEEE Transactions on Image Processing, 1995, 4(5): 594–602. doi: 10.1109/83.382494
    KATSAGGELOS A K, BIEMOND J, SCHAFER R W, et al. A regularized iterative image restoration algorithm[J]. IEEE Transactions on Signal Processing, 1991, 39(4): 914–929. doi: 10.1109/78.80914
    MILLER K. Least squares methods for ill-posed problems with a prescribed bound[J]. SIAM Journal on Mathematical Analysis, 1970, 1(1): 52–74. doi: 10.1137/0501006
    KOLDA T G and BADER B W. Tensor decompositions and applications[J]. SIAM Review, 2009, 51(3): 455–500. doi: 10.1137/07070111X
    COMON P, TEN BERGE J M, DE LATHAUWER L, et al. Generic and typical ranks of multi-way arrays[J]. Linear Algebra and Its Applications, 2009, 430(11/12): 2997–3007. doi: 10.1016/j.laa.2009.01.014
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  2844
  • HTML全文浏览量:  1326
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-19
  • 修回日期:  2019-04-20
  • 网络出版日期:  2019-09-27
  • 刊出日期:  2020-02-19

目录

    /

    返回文章
    返回