A Grating Lobe Suppression Method of Wideband Real Time Delay Pattern Based on Particle Swarm Optimization Algorithm
-
摘要: 针对阵元间距大于信号波长引起阵列方向图出现栅瓣的问题,该文提出一种基于粒子群优化(PSO)算法的宽带真延时方向图栅瓣抑制方法。该方法首先定义了基于宽带真延时的阵列能量方向图,其次构造了以阵列能量方向图的最高副瓣电平作为适应度函数,最后利用粒子群优化算法优化阵元分布来实现对阵列方向图栅瓣的进一步抑制。仿真结果表明:相比于单独使用粒子群算法和单独使用宽带真延时方法,该方法对方向图栅瓣的抑制性能更加有效,在此基础上,该文还研究了阵元个数、平均阵元间距、信号时宽和信号中心频率等因素对方法抑制栅瓣性能的影响。Abstract: A grating lobe suppression method of wideband real time delay pattern based on Particle Swarm Optimization(PSO) algorithm is proposed to solve the problem of grating lobe arise from inter-element is larger than wavelength. Firstly, the array energy pattern based on wideband real time delay is defined. Then, a fitness function is constructed with maximum sidelobe level of the array energy pattern. Finally, the grating lobe is further suppressed by optimizing the elements position distribution using Particle Swarm Optimization (PSO) algorithm. The simulation results show that the proposed grating lobes suppression method is more effective than individually using the particle swarm optimization method or the wideband real time delay method. Furthermore, the influence of the element space, the element number, the time width and the center frequency of signal on the performance of grating lobe suppression are studied.
-
表 1 基于粒子群优化算法的宽带阵列方向图栅瓣抑制方法每次循环后更新粒子流程
(1) 如果${\rm{MSL}}{{\rm{L}}_{i,q - 1}} > {\rm{MSLL}}_i^q$, ${\rm{MSL}}{{\rm{L}}_{i,q}} \leftarrow {\rm{MSLL}}_i^q$, ${\text{d}}{{\text{d}}_{i,q}} \leftarrow {\text{dd}}_i^q$;否则${\rm{MSL}}{{\rm{L}}_{i,q}} \leftarrow {\rm{MSL}}{{\rm{L}}_{i,q - 1}}$, ${\text{d}}{{\text{d}}_{i,q}} \leftarrow {\text{d}}{{\text{d}}_{i,q - 1}}$; (2) 如果${\rm{MSL}}{{\rm{L}}_{q - 1}}{\rm{ > MSL}}{{\rm{L}}_{i,q}}$, ${\rm{MSL}}{{\rm{L}}_q} \leftarrow {\rm{MSL}}{{\rm{L}}_{i,q}}$, ${{\text{g}}_q} \leftarrow {\text{dd}}_i^q$;否则${\rm{MSL}}{{\rm{L}}_q} \leftarrow {\rm{MSL}}{{\rm{L}}_{q - 1}}$, ${{\text{g}}_q} \leftarrow {{\text{g}}_{q - 1}}$。 注:表中,${\rm{MSLL}}_i^q$为第i个粒子第q次循环的适应度函数值,${\rm{MSL}}{{\rm{L}}_{i,q}}$为第i个粒子第q次循环后的最佳适应度函数值,${\rm{MSL}}{{\rm{L}}_q}$为整个粒子群第q次循环后的最佳适应度函数值。 -
王永良, 陈辉, 彭应宁, 等. 空间谱估计理论与算法[M]. 北京: 清华大学出版社, 2004. 22–25.WANG Yongliang, CHEN Hui, PENG Yingning, et al. Spatial Spectrum Estimation Theory and Algorithm[M]. Beijing: Tsinghua University Press, 2009. 22–25. 丁志丹, 杨飞, 蔡海文, 等. 基于微光学阵列差分真时延网络的光学多波束合成系统[J]. 中国激光, 2017, 44(4): 0406004.DING Zhidan, YANG Fei, CAI Haiwen, et al. Optical multi-beam synthetic system based on micro-optical array differential true time delay network[J]. Chinese Journal of Lasers, 2017, 44(4): 0406004. 曹爱华, 李海林, 马守磊, 等. 基于MOPSO与凸优化算法的稀布圆阵列方向图优化[J]. 数据采集与处理, 2017, 32(5): 980–987. doi: 10.16337/j.1004-9037.2017.05.015CAO Aihua, LI Hailin, MA Shoulei, et al. Sparse circular array pattern optimization based on MOPSO and convex optimization[J]. Journal of Data Acquisition and Processing, 2017, 32(5): 980–987. doi: 10.16337/j.1004-9037.2017.05.015 冯晶晶, 陈祝明, 江朝抒. 非均匀分布式星载雷达栅瓣抑制技术研究[J]. 现代雷达, 2010, 32(4): 50–53. doi: 10.3969/j.issn.1004-7859.2010.04.013FENG Jingjing, CHEN Zhuming, and JIANG Chaoshu. Grating lobes suppression for non-uniform distributed space-based radar[J]. Modern Radar, 2010, 32(4): 50–53. doi: 10.3969/j.issn.1004-7859.2010.04.013 GOFFER A P, KAM M, and HERCZFELD P R. Design of phased arrays in terms of random subarrays[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(6): 820–826. doi: 10.1109/8.301701 XIONG Ziyuan, XU Zhenhai, and XIAO Shunping. Beamforming properties and design of the phased arrays in terms of irregular subarrays[J]. IET Microwaves, Antennas & Propagation, 2015, 9(4): 369–379. TOYAMA N. Aperiodic array consisting of subarrays for use in small mobile earth stations[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(6): 2004–2010. doi: 10.1109/TAP.2005.848486 ALSHAMMARY A, WEISS S, and ALMORQI S. Grating lobe suppression in rotationally tiled arrays[C]. Proceedings of the 11th European Conference on Antennas and Propagation, Paris, France, 2017: 1158–1161. WANG Hao, FANG Dagang, and CHOW Y L. Grating lobe reduction in a phased array of limited scanning[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(6): 1581–1586. doi: 10.1109/TAP.2008.923354 KRIVOSHEEV Y V, SHISHLOV A V, and DENISENKO V V. Grating lobe suppression in aperiodic phased array antennas composed of periodic subarrays with large Element spacing[J]. IEEE Antennas and Propagation Magazine, 2015, 57(1): 76–85. doi: 10.1109/MAP.2015.2397155 王建, 盛卫星, 韩玉兵, 等. 基于压缩感知的自适应数字波束形成算法[J]. 电子与信息学报, 2013, 35(2): 438–444. doi: 10.3724/SP.J.1146.2012.00517WANG Jian, SHENG Weixing, HAN Yubing, et al. Adaptive digital beamforming algorithm based on compressed sensing[J]. Journal of Electronics &Information Technology, 2013, 35(2): 438–444. doi: 10.3724/SP.J.1146.2012.00517 王建, 盛卫星, 韩玉兵, 等. 基于压缩感知的圆阵自适应数字波束形成算法[J]. 电波科学学报, 2014, 29(3): 455–461. doi: 10.13443/j.cjors.2013060802WANG Jian, SHENG Weixing, HAN Yubing, et al. Compressed sensing based adaptive digital beamforming algorithm in circle arrays[J]. Chinese Journal of Radio Science, 2014, 29(3): 455–461. doi: 10.13443/j.cjors.2013060802 HU Mengzhong, JIN Xueming, and HU Yuankui. A method for suppressing grating lobes of wideband reconnaissance DBF[C]. Proceedings of 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, Xi’an, China, 2016: 1547–1550. RIES S and KAISER T. Ultra wideband impulse beamforming: It is a different world[J]. Signal Processing, 2006, 86(9): 2198–2207. doi: 10.1016/j.sigpro.2005.07.041 KAISER T, ZHENG Feng, and DIMITROV E. An overview of ultra-wide-band systems with MIMO[J]. Proceedings of the IEEE, 2009, 97(2): 285–312. doi: 10.1109/JPROC.2008.2008784 SIPAL V, EDWARDS D, and ALLEN B. Bandwidth requirement for suppression of grating lobes in ultrawideband antenna arrays[C]. Proceedings of 2012 IEEE International Conference on Ultra-Wideband, Syracuse, USA, 2012: 236–240. YE Xingwei, ZHANG Yamei, and PAN Shilong. Performance evaluation of RF beamforming based on a wideband antenna array and photonic true time delay[C]. Proceedings of the 14th International Conference on Optical Communications and Networks, Nanjing, China, 2015. YE Xingwei, ZHANG Bowen, ZHANG Yamei, et al. Performance evaluation of optical beamforming-based wideband antenna array[J]. Chinese Optics Letters, 2017, 15(1): 010013. doi: 10.3788/COL LI Ruoming, LI Wangzhe, DING Manlai, et al. Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing[J]. Optics Express, 2017, 25(13): 14334–14340. doi: 10.1364/OE.25.014334 ZHANG Fangzheng, GUO Qingshui, WANG Ziqian, et al. Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging[J]. Optics Express, 2017, 25(14): 16274–16281. doi: 10.1364/OE.25.016274 WANG Anle, WO Jianghai, LUO Xiong, et al. Ka-band microwave photonic ultra-wideband imaging radar for capturing quantitative target information[J]. Optics Express, 2018, 26(16): 20708–20717. doi: 10.1364/OE.26.020708