高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分段循环冗余校验的极化码自适应连续取消列表译码算法

王琼 罗亚洁 李思舫

王琼, 罗亚洁, 李思舫. 基于分段循环冗余校验的极化码自适应连续取消列表译码算法[J]. 电子与信息学报, 2019, 41(7): 1572-1578. doi: 10.11999/JEIT180716
引用本文: 王琼, 罗亚洁, 李思舫. 基于分段循环冗余校验的极化码自适应连续取消列表译码算法[J]. 电子与信息学报, 2019, 41(7): 1572-1578. doi: 10.11999/JEIT180716
Qiong WANG, Yajie LUO, Sifang LI. Polar Adaptive Successive Cancellation List Decoding Based on Segmentation Cyclic Redundancy Check[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1572-1578. doi: 10.11999/JEIT180716
Citation: Qiong WANG, Yajie LUO, Sifang LI. Polar Adaptive Successive Cancellation List Decoding Based on Segmentation Cyclic Redundancy Check[J]. Journal of Electronics & Information Technology, 2019, 41(7): 1572-1578. doi: 10.11999/JEIT180716

基于分段循环冗余校验的极化码自适应连续取消列表译码算法

doi: 10.11999/JEIT180716
基金项目: 国家科技重大专项基金(2018ZX03001026-002)
详细信息
    作者简介:

    王琼:女,1971年生,高级工程师,研究方向为移动通信

    罗亚洁:女,1994年生,硕士生,研究方向为移动通信物理层算法、信道编码

    李思舫:男,1992年生,硕士生,研究方向为移动通信物理层算法、信道编码

    通讯作者:

    罗亚洁 664136256@qq.com

  • 中图分类号: TN929.5

Polar Adaptive Successive Cancellation List Decoding Based on Segmentation Cyclic Redundancy Check

Funds: The National Science and Technology Major Project of China (2018ZX03001026-002)
  • 摘要: 针对极化码连续取消列表(SCL)译码算法为获取较好性能而采用较多的保留路径数,导致译码复杂度较高的缺点,自适应SCL译码算法虽然在高信噪比下降低了一定的计算量,却带来了较高的译码延时。根据极化码的顺序译码结构,该文提出了一种分段循环冗余校验(CRC)与自适应选择保留路径数量相结合的SCL译码算法。仿真结果表明,与传统CRC辅助SCL译码算法、自适应SCL译码算法相比,该算法在码率R=0.5时,低信噪比下(–1 dB)复杂度降低了约21.6%,在高信噪比下(3 dB)复杂度降低了约64%,同时获得较好的译码性能。
  • 图  1  SCL译码树与SC译码树

    图  2  L选择器

    图  3  SCAD-SCL算法流程图

    图  4  SCL-16与SCL-32性能对比图

    图  5  SCAD-SCL与AD-SCL复杂度对比

    图  6  $R = 0.500$时,SCAD-SCL与AD-SCL误码性能比较

    图  7  $R = 0.250$时,SCAD-SCL与AD-SCL误码性能比较

    图  8  $R = 0.125$时,SCAD-SCL与AD-SCL误码性能比较

    表  1  仿真参数

    仿真参数具体内容
    编码结构${G_N} = {F^{ \otimes n}}$
    信道环境AWGN
    调制方式BPSK
    子信道置信序列构造法DE-GA
    译码算法CA-SCL, AD-SCL, SCAD-SCL
    下载: 导出CSV

    表  2  R=0.5时不同算法复杂度比较

    ${E_b}/{N_0}$ (dB)
    –1.0–0.500.51.01.52.02.53.0
    AD-SCL42304422394085032248141534648203415881536
    SCAD-SCL33177331203191824274105902696837571538
    下载: 导出CSV
  • ARIKAN E. Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels[J]. IEEE Transactions on Information Theory, 2009, 55(7): 3051–3073. doi: 10.1109/TIT.2009.2021379
    ARIKAN E and TELATAR E. On the rate of channel polarization[C]. Proceedings of 2009 IEEE International Symposium on Information Theory, Seoul, South Korea, 2009: 1493–1495.
    ZHANG Chuan and PARHI K K. Low-latency sequential and overlapped architectures for successive cancellation polar decoder[J]. IEEE Transactions on Signal Processing, 2013, 61(10): 2429–2441. doi: 10.1109/TSP.2013.2251339
    TAL I and VARDY A. List decoding of polar codes[C]. Proceedings of 2011 IEEE International Symposium on Information Theory Proceedings, St. Petersburg, Russia, 2011: 1–5.
    ERCAN F, CONDO C, HASHEMI S A, et al. On error-correction performance and implementation of polar code list decoders for 5G[EB/OL]. http://arxiv.org/abs/1708.04706, 2017.
    NIU Kai and CHEN Kai. CRC-aided decoding of polar codes[J]. IEEE Communications Letters, 2012, 16(10): 1668–1671. doi: 10.1109/LCOMM.2012.090312.121501
    ZHOU Huayi, ZHANG Chuan, SONG Wenqing, et al. Segmented CRC-aided SC list polar decoding[C]. Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference, Nanjing, China, 2016: 1–5.
    HASHEMI S A, CONDO C, and GROSS W J. Simplified successive-cancellation list decoding of polar codes[C]. Proceedings of 2016 IEEE International Symposium on Information Theory, Barcelona, Spain, 2016: 815–819.
    HASHEMI S A, CONDO C, and GROSS W J. Fast simplified successive-cancellation list decoding of polar codes[C]. Proceedings of 2017 IEEE Wireless Communications and Networking Conference Workshops, San Francisco, USA, 2017: 1–6.
    LI Bin, SHEN Hui, and TSE D. An adaptive successive cancellation list decoder for polar codes with cyclic redundancy check[J]. IEEE Communications Letters, 2012, 16(12): 2044–2047. doi: 10.1109/LCOMM.2012.111612.121898
    MORI R and TANAKA T. Performance of polar codes with the construction using density evolution[J]. IEEE Communications Letters, 2009, 13(7): 519–521. doi: 10.1109/LCOMM.2009.090428
    WU Daolong, LI Ying, and SUN Yue. Construction and block error rate analysis of polar codes over AWGN channel based on Gaussian approximation[J]. IEEE Communications Letters, 2014, 18(7): 1099–1102. doi: 10.1109/LCOMM.2014.2325811
    SCHURCH C. A partial order for the synthesized channels of a polar code[C]. Proceedings of 2016 IEEE International Symposium on Information Theory, Barcelona, Spain, 2016: 220–224.
    HE Gaoning, BELFIORE J C, LAND I, et al. Beta-expansion: a theoretical framework for fast and recursive construction of polar codes[C]. Proceedings of 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6.
    BALATSOUKAS-STIMMING A, PARIZI M B, and BURG A. LLR-based successive cancellation list decoding of polar codes[C]. Proceedings of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy, 2014: 3903–3907.
    VANGALA H, VITERBO E, and HONG Yi. A comparative study of polar code constructions for the AWGN channel[EB/OL]. http://arxiv.org/abs/1501.02473, 2015.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  2588
  • HTML全文浏览量:  1075
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-17
  • 修回日期:  2019-01-14
  • 网络出版日期:  2019-01-25
  • 刊出日期:  2019-07-01

目录

    /

    返回文章
    返回