高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高斯整数零相关区序列集构造方法的研究

陈晓玉 李冠敏 孔德明 李玉博

陈晓玉, 李冠敏, 孔德明, 李玉博. 高斯整数零相关区序列集构造方法的研究[J]. 电子与信息学报, 2019, 41(6): 1420-1426. doi: 10.11999/JEIT180703
引用本文: 陈晓玉, 李冠敏, 孔德明, 李玉博. 高斯整数零相关区序列集构造方法的研究[J]. 电子与信息学报, 2019, 41(6): 1420-1426. doi: 10.11999/JEIT180703
Xiaoyu CHEN, Guanmin LI, Deming KONG, Yubo LI. Research on the Constructions of Gaussian Integer Zero Correlation Zone Sequence Set[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1420-1426. doi: 10.11999/JEIT180703
Citation: Xiaoyu CHEN, Guanmin LI, Deming KONG, Yubo LI. Research on the Constructions of Gaussian Integer Zero Correlation Zone Sequence Set[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1420-1426. doi: 10.11999/JEIT180703

高斯整数零相关区序列集构造方法的研究

doi: 10.11999/JEIT180703
基金项目: 国家自然科学基金(61601399, 61501395, 61501394),河北省自然科学基金(F2016203155),河北省高等学校科学研究计划(QN2016120)
详细信息
    作者简介:

    陈晓玉:女,1983年生,副教授,研究方向为扩频序列设计

    李冠敏:女,1993年生,硕士生,研究方向为扩频序列设计

    孔德明:男,1983年生,副教授,研究方向为数字信号处理技术

    李玉博:男,1985年生,副教授,研究方向为无限通信中的序列设计

    通讯作者:

    孔德明 demingkong@ysu.edu.cn

  • 中图分类号: TN911.2

Research on the Constructions of Gaussian Integer Zero Correlation Zone Sequence Set

Funds: The National Natural Science Foundation of China (61601399, 61501395, 61501394), The Natural Science Foundation of Hebei Province (F2016203155), The Science Research Programs of Hebei Educational Committee (QN2016120)
  • 摘要: 该文提出两类高斯整数零相关区(ZCZ)序列集的构造方法。方法1以ZCZ序列集为基础,利用插零滤波法构造高斯整数ZCZ序列集,并给出了所构造的高斯整数ZCZ序列集度的计算方法。方法2提出了两种高斯整数正交矩阵的构造方法,进而基于正交矩阵构造最优高斯整数ZCZ序列集。该文所构造的高斯整数ZCZ序列集可以应用于准同步码多分址(QS-CDMA)、正交频分复用(OFDM)和多输入多输出(MIMO)等多种通信系统中,在抑制干扰的同时,提高系统的频谱效率。
  • 表  1  ${c\,^0}$${c\,^1}$序列元素

    $\begin{aligned}{c\,^0} =& [6 + 11j,6 + 2j, - 6 + 10j,6 + 11j, - 6 - 2j,\\& \quad 6 - 10j, - 6 - 11j, - 6 - 2j, - 6 + 10j,6 + 11j, - 6 - 2j,\\& \quad - 6 + 10j,6 + 11j,6 + 2j, - 6 + 10j, 6 + 11j,6 + 2j,\\& \quad 6 - 10j, - 6 - 11j,6 + 2j, - 6 + 10j,6 + 11j, - 6 - 2j,\\& \quad - 6 + 10j, - 6 - 11j,6 + 2j, - 6 + 10j, - 6 - 11j,6 + 2j,\\& \quad 6 - 10j,- 6 - 11j,6 + 2j,6 - 10j,6 + 11j, - 6 - 2j,\\& \quad 6 - 10j, - 6 - 11j,6 + 2j, - 6 + 10j, - 6 - 11j,- 6 - 2j,6 - 10j,\\& \quad - 6 - 11j, - 6 - 2j,{6 - 10j,6 + 11j, - 6 - 2j,6 - 10j]}\end{aligned} $
    $\begin{aligned}{c\,^1} =& [ - 6 - 11j, - 6 - 2j, - 6 + 10j, - 6 - 11j, - 6 - 2j,6 - 10j,\\& \quad 6 + 11j, - 6 - 2j,6 - 10j, - 6 - 11j, - 6 - 2j,6 - 10j,6 + 11j,\\& \quad 6 + 2j,6 - 10j,6 + 11j, - 6 - 2j, - 6 + 10j, - 6 - 11j, - 6 - 2j,\\& \quad - 6 + 10j,6 + 11j,6 + 2j, - 6 + 10j,6 + 11j, - 6 - 2j, - 6 + 10j,\\& \quad {6 + 11j,6 + 2j,6 - 10j,6 + 11j,6 + 2j, - 6 + 10j, - 6 - 11j,}\\& \quad { - 6 - 2j, - 6 + 10j, - 6 - 11j,6 + 2j,6 - 10j, - 6 - 11j,6 + 2j,}\\& \quad { - 6 + 10j, - 6 - 11j,6 + 2j,6 - 10j,6 + 11j,6 + 2j,6 - 10j]}\end{aligned}$
    下载: 导出CSV

    表  2  正交矩阵的构造实例

    矩阵构造方法参数矩阵实例
    ${{\text{H}}_2}$基于多电平$\begin{array}{l} a = (1 + j) \\ b = (1 - j) \\ \end{array} $${{\text{H}}_2} = \left[ {\begin{array}{*{20}{c}} 2&{2j} \\ {2j}&2 \end{array}} \right]$
    ${{\text{H}}_3}$基于DFT变换$\begin{array}{l} {m_i} = (18,1,6) \\ {a_i} = ( - 1, - 1, - 3) \\ {b_i} = (3, - 4,3) \\ \end{array} $${{\text{H}}_3} = \left[ {\begin{array}{*{20}{c}} {18 + 6j,18 - 6j,18} \\ {1 - 8j,1 + j,1 + 7j} \\ {6 + 6j,6 - 12j,6 + 6j} \end{array}} \right]$
    ${{\text{H}}_5}$基于多电平$\begin{array}{l} a = (1 + j, - 1 + j) \\ b = (1 - j, - 1 - j) \\ c = (2 + j) \\ \end{array} $${{\text{H}}_5} = \left[ {\begin{array}{*{20}{c}} {1 + 5j,1 - 5j, - 4, - 4, - 4,} \\ {5 + j, - 5 + j, - 4j, - 4j, - 4j} \\ {4,4, - 1 + 5j, - 1 - 5j,4} \\ { - 4j, - 4j, - 5 + j,5 + j, - 4j} \\ { - 4 - 2j, - 4 - 2j, - 4 - 2j, - 4 - 2j,6 + 3j} \end{array}} \right]$
    ${{\text{H}}_6} = {{\text{H}}_2} \otimes {{\text{H}}_3}$Kronecker积同${{\text{H}}_2}$和${{\text{H}}_3}$的参数${{\text{H}}_6} = \left[ \begin{array}{l} 36 + 12j,36 - 12j,36, - 12 + 36j,12 + 36j,36j; \\ 2 - 16j,2 + 2j,2 + 14j,16 + 2j, - 2 + 2j, - 14 + 2j; \\ 12 + 12j,12 - 24j,12 + 12j, - 12 + 12j,24 + 12j, - 12 + 12j; \\ - 12 + 36j,12 + 36j,36j,36 + 12j,36 - 12j,36; \\ 16 + 2j, - 2 + 2j, - 14 + 2j,2 - 16j,2 + 2j,2 + 14j; \\ - 12 + 12j,24 + 12j, - 12 + 12j,12 + 12j,12 - 24j,12 + 12j \\ \end{array} \right]$
    下载: 导出CSV

    表  3  高斯整数ZCZ序列集参数比较

    文献定理构造基础序列集参数$\eta $
    文献[10] 定理32元正交矩阵${\rm{ZCZ}}(L,N,Z - 1),\gcd (N,Z) = 1$
    ${\rm{ZCZ}}(L,N,Z - 2),\gcd (N,Z) > 1$
    $\eta \le 1$
    文献[11] 定理1多元${\rm{ZCZ}}(L,N,K)$序列集${\rm{ZCZ}}(L,N,K)$$\eta \le 1$
    文献[14] 定理1移位序列和完备高斯整数序列${\rm{ZCZ}}(2N,2M,Z)$$\eta \le 1$
    文献[19] 定理12元伪随机序列${\rm{ZCZ}}(2N,2M,Z),N = {2^n} - 1$$\eta \le 1$
    本文 定理1${\rm{ZCZ}}(N,M,Z)$序列集和完备高斯整数序列${\rm{ZCZ}}(NK,M,ZK)$$\eta \le 1$
    本文 构造法2高斯整数正交矩阵${\rm{ZCZ}}(NK,N,K)$$\eta = 1$
    下载: 导出CSV
  • HUBER K. Codes over Gaussian integers[J]. IEEE Transactions on Information Theory, 1994, 40(1): 207–216. doi: 10.1109/18.272484
    LEE C D and HONG Shaohua. Generation of long perfect Gaussian integer sequences[J]. IEEE Signal Processing Letters, 2017, 24(4): 515–519. doi: 10.1109/LSP.2017.2674972
    刘元慧, 许成谦, 赵冰. p-1级高斯整数序列的构造[J]. 北京邮电大学学报, 2017, 40(1): 53–56. doi: 10.13190/j.jbupt.2017.01.009

    LIU Yuanhui, XU Chengqian, and ZHAO Bing. Constructions of Gaussian integer sequences of degree-(p-1)[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(1): 53–56. doi: 10.13190/j.jbupt.2017.01.009
    CHANG K J and CHANG H H. Perfect Gaussian integer sequences of period pk with degrees equal to or less than k+1[J]. IEEE Transactions on Communications, 2017, 65(9): 3723–3733. doi: 10.1109/TCOMM.2017.2714702
    李玉博, 陈邈. 几乎完备高斯整数序列构造法[J]. 电子与信息学报, 2018, 40(7): 1752–1758. doi: 10.11999/JEIT170844

    LI Yubo and CHEN Miao. Construction of nearly perfect Gaussian integer sequences[J]. Journal of Electronics &Information Technology, 2018, 40(7): 1752–1758. doi: 10.11999/JEIT170844
    PEI S C and CHANG Kuowei. Perfect Gaussian integer sequences of arbitrary length[J]. IEEE Signal Processing Letters, 2015, 22(8): 1040–1044. doi: 10.1109/LSP.2014.2381642
    CHANG H S, LI C P, LEE C D, et al. Perfect Gaussian integer sequences of arbitrary composite length[J]. IEEE Transactions on Information Theory, 2015, 61(7): 4107–4115. doi: 10.1109/TIT.2015.2438828
    CHEN Haibin, ZHANG Rongqing, ZHAI Wenjun, et al. Interference-free pilot design and channel estimation using ZCZ sequences for MIMO-OFDM-Based C-V2X communications[J]. China Communications, 2018, 15(7): 47–54. doi: 10.1109/CC.2018.8424582
    刘涛, 许成谦, 李玉博. 基于差集构造零相关区高斯整数序列集[J]. 电子与信息学报, 2017, 39(9): 2277–2281. doi: 10.11999/JEIT161177

    LIU Tao, XU Chengqian, and LI Yubo. Construction of zero correlation zone Gaussian integer sequence sets based on difference sets[J]. Journal of Electronics &Information Technology, 2017, 39(9): 2277–2281. doi: 10.11999/JEIT161177
    李玉博, 孙嘉安, 荆楠. 零相关区高斯整数序列集构造法[J]. 通信学报, 2017, 38(9): 25–30. doi: 10.11959/j.issn.1000-436x.2017179

    LI Yubo, SUN Jiaan, and JING Nan. Construction of zero correlation zone Gaussian integer sequence set[J]. Journal on Communications, 2017, 38(9): 25–30. doi: 10.11959/j.issn.1000-436x.2017179
    刘凯, 陈盼盼. 最佳及几乎最佳高斯整数ZCZ序列集的构造[J]. 电子学报, 2018, 46(3): 755–760. doi: 10.3969/j.issn.0372-2112.2018.03.034

    LIU Kai and CHEN Panpan. Construction of optimal and almost optimal Gaussian integer sequence sets with zero correlation zone[J]. Acta Electronica Sinica, 2018, 46(3): 755–760. doi: 10.3969/j.issn.0372-2112.2018.03.034
    LI Yubo, LIU Kai, and XU Chengqian. A construction of optimal 16-QAM+ sequence sets with zero correlation zone[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2016, E99-A(4): 819–825. doi: 10.1587/transfun.E99.A.819
    CHEN Xiaoyu, KONG Deming, XU Chengqian, et al. Constructions of Gaussian integer sequences with zero correlation zone[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2016, E99-A(6): 1260–1263. doi: 10.1587/transfun.E99.A.1260
    刘凯, 姜昆. 交织法构造高斯整数零相关区序列集[J]. 电子与信息学报, 2017, 39(2): 328–334. doi: 10.11999/JEIT160276

    LIU Kai and JIANG Kun. Construction of Gaussian integer sequence sets with zero correlation zone based on interleaving technique[J]. Journal of Electronics &Information Technology, 2017, 39(2): 328–334. doi: 10.11999/JEIT160276
    TANG X H, FAN P Z, and MATSUFUJI S. Lower bounds on correlation of spreading sequence set with low or zero correlation zone[J]. Electronics Letters, 2000, 36(6): 551–552. doi: 10.1049/el:20000462
    LIU Y C, CHEN C W, and SU Y T. New constructions of zero-correlation zone sequences[J]. IEEE Transactions on Information Theory, 2013, 59(8): 4994–5007. doi: 10.1109/TIT.2013.2253831
    CHUNG J H and YANG K. New design of quaternary low-correlation zone sequence sets and quaternary Hadamard matrices[J]. IEEE Transactions on Information Theory, 2008, 54(8): 3733–3737. doi: 10.1109/TIT.2008.926406
    KONG Deming, CHEN Xiaoyu, and LI Yubo. Constructions of Gaussian integer periodic complementary sequences with ZCZ[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2017, E100-A(9): 2056–2060. doi: 10.1587/transfun.E100.A.2056
    LI Yubo and XU Chengqian. A new construction of zero correlation zone Gaussian integer sequence sets[J]. IEEE Communications Letters, 2016, 20(12): 2418–2421. doi: 10.1109/LCOMM.2016.2609383
  • 加载中
表(3)
计量
  • 文章访问数:  2483
  • HTML全文浏览量:  720
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-13
  • 修回日期:  2019-01-28
  • 网络出版日期:  2019-02-20
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回