高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于几何的高速铁路协作MIMO信道建模

陶成 赵振桥 周涛

陶成, 赵振桥, 周涛. 基于几何的高速铁路协作MIMO信道建模[J]. 电子与信息学报, 2019, 41(6): 1344-1351. doi: 10.11999/JEIT180680
引用本文: 陶成, 赵振桥, 周涛. 基于几何的高速铁路协作MIMO信道建模[J]. 电子与信息学报, 2019, 41(6): 1344-1351. doi: 10.11999/JEIT180680
Cheng TAO, Zhenqiao ZHAO, Tao ZHOU. Geometry-based Modeling for Cooperative MIMO Channel in High-speed Railway Scenarios[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1344-1351. doi: 10.11999/JEIT180680
Citation: Cheng TAO, Zhenqiao ZHAO, Tao ZHOU. Geometry-based Modeling for Cooperative MIMO Channel in High-speed Railway Scenarios[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1344-1351. doi: 10.11999/JEIT180680

基于几何的高速铁路协作MIMO信道建模

doi: 10.11999/JEIT180680
基金项目: 国家自然科学基金(61701017),北京市自然科学基金(4174102),东南大学移动通信国家重点实验室开放研究基金(2018D11),中央高校基本科研业务费专项(2018JBM003)
详细信息
    作者简介:

    陶成:男,1963年生,教授,博士生导师,研究方向为无线通信、MIMO、扩频通信

    赵振桥:女,1993年生,硕士生,研究方向为高铁协作多天线信道建模

    周涛:男,1988年生,副教授,研究方向为高铁信道测量与建模

    通讯作者:

    周涛 taozhou@bjtu.edu.cn

  • 中图分类号: TN929.5

Geometry-based Modeling for Cooperative MIMO Channel in High-speed Railway Scenarios

Funds: The Natural Science Foundation of China (61701017), Beijing Natural Science Foundation (4174102), The Research Fund of National Mobile Communications Research Laboratory, Southeast University (2018D11), The Fundamental Research Funds for the Central Universities (2018JBM003))
  • 摘要: 协作MIMO技术通过协作发射或协作接收的方式可以将干扰信号转变为有用信号,在高铁无线通信中引入该技术,能解决回波信道响应和提高系统容量。为了掌握协作MIMO技术在高铁场景中的信道特性,该文基于几何随机散射理论,提出一个高速铁路协作MIMO信道模型,简单调整该模型中的几个关键参数即可适用于高速铁路的多种场景。基于该模型计算信道冲激响应,推导多链路空间相关函数,进行数值计算、仿真分析和实测数据验证。仿真结果显示,直射分量越强,散射分量的角度扩展越小,多链路的空间相关性越强。散射次数越少,散射分量空间相关性越强。使用北京-天津高铁段LTE专网的实测数据验证理论模型的正确性。这些结论有助于认知协作MIMO信道和进行有效的测量活动。
  • 图  1  高速铁路无线通信系统架构

    图  2  高速铁路协作MIMO信道模型的几何示意图

    图  3  莱斯K因子对直射分量的相关性的影响

    图  4  列车位置对单环分量的相关性的影响

    图  5  角度扩展、平均到达角对单环分量的相关性的影响

    图  6  角度扩展、平均到达角对2次散射分量的相关性的影响

    图  7  莱斯K因子对单环分量、2次散射分量的相关性的影响对比图

    图  8  角度扩展对单环分量、2次散射分量相关性的影响对比图

    图  9  理论模型与实测数据的多链路相关性的概率分布函数及对数正态分布的拟合结果

  • HOU H A and WANG H H. Analysis of distributed antenna system over high-speed railway communication[C]. Proceedings of the 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications, Sydney, Australia, 2012: 1300–1305.
    ZHU Li, YU F R, NING Bin, et al. Design and performance enhancements in communication-based train control systems with coordinated multipoint transmission and reception[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(3): 1258–1272. doi: 10.1109/TITS.2014.2298409
    KARAKAYALI M K, FOSCHINI G J, and VALENZUELA R A. Network coordination for spectrally efficient communications in cellular systems[J]. IEEE Wireless Communications, 2006, 13(4): 56–61. doi: 10.1109/MWC.2006.1678166
    WANG Chengxiang, HONG Xuemin, GE Xiaohu, et al. Cooperative MIMO channel models: a survey[J]. IEEE Communications Magazine, 2010, 48(2): 80–87. doi: 10.1109/MCOM.2010.5402668
    POUTANEN J, TUFVESSON F, HANEDA K, et al. Multi-link MIMO channel modeling using geometry-based approach[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2): 587–596. doi: 10.1109/TAP.2011.2122296
    JIA Guiyuan, WU Muqing, ZHAO Min, et al. A 3-D channel model for high-speed railway communications in mountain scenario[J]. Lecture Notes in Electrical Engineering, 2014, 246: 1173–1181. doi: 10.1007/978-3-319-00536-2_133
    GHAZAL A, YUAN Yi, WANG Chengxiang, et al. A non-stationary IMT-Advanced MIMO channel model for high-mobility wireless communication systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(4): 2057–2068. doi: 10.1109/TWC.2016.2628795
    LIU Yu, WANG Chengxiang, LOPEZ C, et al. 3D non-stationary wideband circular tunnel channel models for high-speed train wireless communication systems[J]. Science China Information Sciences, 2017, 60(8): 082304. doi: 10.1007/s11432-016-9004-4
    WU Shangbin, WANG Chengxiang, AGGOUNE E H M, et al. A general 3-D non-stationary 5G wireless channel model[J]. IEEE Transactions on Communications, 2018, 66(7): 3065–3078. doi: 10.1109/TCOMM.2017.2779128
    CHENG Xiang, WANG Chengxiang, YUAN Yi, et al. A novel 3D regular-shaped geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels[C]. Proceedings of the 2010 IEEE 72nd Vehicular Technology Conference-Fall, Ottawa, Canada, 2010: 1–5.
    廖勇, 胡异. 高速移动下U型槽的时变信道建模[J]. 计算机应用, 2017, 37(10): 2735–2741. doi: 10.11772/j.issn.1001-9081.2017.10.2735

    LIAO Yong and HU Yi. High-speed mobile time-varying channel modeling under U-shaped groove[J]. Journal of Computer Applications, 2017, 37(10): 2735–2741. doi: 10.11772/j.issn.1001-9081.2017.10.2735
    CHENG Xiang, WANG Chengxiang, LAURENSON D I, et al. An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels[J]. IEEE Transactions on Wireless Communications, 2009, 8(9): 4824–4835. doi: 10.1109/TWC.2009.081560
    GHAZAL A, WANG Chengxiang, HAAS H, et al. A non-stationary MIMO channel model for high-speed train communication systems[C]. Proceedings of the 2012 IEEE 75th Vehicular Technology Conference, Yokohama, Japan, 2012: 1–5.
    ABDI A and KAVEH M. A space-time correlation model for multielement antenna systems in mobile fading channels[J]. IEEE Journal on Selected Areas in Communications, 2002, 20(3): 550–560. doi: 10.1109/49.995514
    CHENG Xiang, WANG Chengxiang, AI Bo, et al. Investigation of multi-link spatial correlation properties for cooperative MIMO channels[C]. Proceedings of 2012 International Conference on Wireless Communications and Signal Processing, Huangshan, China, 2012: 1–7.
    ABDI A, BARGER J A, and KAVEH M. A parametric model for the distribution of the angle of arrival and the associated correlation function and power spectrum at the mobile station[J]. IEEE Transactions on Vehicular Technology, 2002, 51(3): 425–434. doi: 10.1109/TVT.2002.1002493
    CHENG Xiang, WANG Chengxiang, WANG Haiming, et al. Cooperative MIMO channel modeling and multi-link spatial correlation properties[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(2): 388–396. doi: 10.1109/JSAC.2012.120218
    ZHOU Tao, TAO Cheng, SALOUS S, et al. Measurements and analysis of angular characteristics and spatial correlation for high-speed railway channels[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 357–367. doi: 10.1109/TITS.2017.2681112
    ZHOU Tao, TAO Cheng, SALOUS S, et al. Joint channel characteristics in high-speed railway multi-link propagation scenarios: measurement, analysis, and modeling[J]. IEEE Transactions on Intelligent Transportation Systems, 2018. doi: 10.1109/TITS.2018.2868973
  • 加载中
图(9)
计量
  • 文章访问数:  2242
  • HTML全文浏览量:  787
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-09
  • 修回日期:  2019-01-10
  • 网络出版日期:  2019-01-18
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回