高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大规模MIMO系统上行链路时间-空间结构信道估计算法

路新华 MANCHÓNCarles Navarro 王忠勇 张传宗

路新华, MANCHÓNCarles Navarro, 王忠勇, 张传宗. 大规模MIMO系统上行链路时间-空间结构信道估计算法[J]. 电子与信息学报, 2020, 42(2): 519-525. doi: 10.11999/JEIT180676
引用本文: 路新华, MANCHÓNCarles Navarro, 王忠勇, 张传宗. 大规模MIMO系统上行链路时间-空间结构信道估计算法[J]. 电子与信息学报, 2020, 42(2): 519-525. doi: 10.11999/JEIT180676
Xinhua LU, Carles Navarro MANCHÓN, Zhongyong WANG, Chuanzong ZHANG. Channel Estimation Algorithm Using Temporal-spatial Structure for Up-link of Massive MIMO Systems[J]. Journal of Electronics & Information Technology, 2020, 42(2): 519-525. doi: 10.11999/JEIT180676
Citation: Xinhua LU, Carles Navarro MANCHÓN, Zhongyong WANG, Chuanzong ZHANG. Channel Estimation Algorithm Using Temporal-spatial Structure for Up-link of Massive MIMO Systems[J]. Journal of Electronics & Information Technology, 2020, 42(2): 519-525. doi: 10.11999/JEIT180676

大规模MIMO系统上行链路时间-空间结构信道估计算法

doi: 10.11999/JEIT180676
基金项目: 国家自然科学基金(61571402, 61501404, 61640003)
详细信息
    作者简介:

    路新华:男,1980年生,讲师,博士生,研究方向为大规模MIMO、信道估计、变分贝叶斯推理和狄利克雷过程

    MANCHÓNCarles Navarro:男,副教授,研究方向为无线通信中的统计信号处理,包括联合信道估计和检测、稀疏信号估计和重构、多天线信号处理技术等

    王忠勇:男,1965年生,教授,研究方向为通信系统及其信号处理、嵌入式系统等

    张传宗:男,1982年生,副教授,研究方向为移动通信系统和接收机的设计、变分推理、因子图与消息传递算法

    通讯作者:

    王忠勇 zywangzzu@gmail.com

  • 中图分类号: TN92

Channel Estimation Algorithm Using Temporal-spatial Structure for Up-link of Massive MIMO Systems

Funds: The National Natural Science Foundation of China (61571402, 61501404, 61640003)
  • 摘要:

    针对大规模多入多出(MIMO)系统上行链路非平稳空间相关信道的估计问题,该文利用信道的时间-空间2维稀疏结构信息,应用狄利克雷过程(DP)和变分贝叶斯推理(VBI),设计了一种低导频开销和计算复杂度的信道估计迭代算法,提高了信道估计精度。由于平稳空间相关信道难以适用于大规模MIMO系统,该文借助于狄利克雷过程构建了非平稳空间相关信道先验模型,可将具有空间关联的多个物理信道映射为具有相同时延结构的概率信道,并应用变分贝叶斯推理设计了低导频开销和计算复杂度的信道估计迭代算法。实验结果验证了所提算法的有效性,且具有对系统关键参数鲁棒性的优点。

  • 图  1  大规模MIMO系统上行链路信道分层贝叶斯图模型

    图  2  信道估计均方误差随信噪比变化曲线图

    图  3  信道估计均方误差随带宽变化曲线图

    表  1  信道估计算法的计算复杂度

    算法复杂度
    本文方法$\cal{O}\left( {R{L^{\rm{2}}}} \right)$
    FSBL$\cal{O}\left( {R{N_{\rm{p}}}L} \right)$
    BSBL$\cal{O}\left( {{{\left( {RL} \right)}^3}} \right)$
    SABMP$\cal{O}\left( {R{N_{\rm{p}}}{L^2}} \right)$
    下载: 导出CSV

    表  2  大规模MIMO-OFDM系统参数

    参数名参数意义数值
    R基站侧天线数128
    fc载波中心频率2.6 GHz
    NOFDM总子载波数1024
    Np信道估计占用子载波数64
    BW用户带宽10~100 MHz
    QQAM调制阶数4
    L信道抽头个数64
    Ip多径总径数20
    下载: 导出CSV
  • MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas[J]. IEEE Transactions on Wireless Communications, 2010, 9(11): 3590–3600. doi: 10.1109/TWC.2010.092810.091092
    RUSEK F, PERSSON D, LAU B K, et al. Scaling up MIMO: opportunities and challenges with very large array[J]. IEEE Signal Processing Magazine, 2013, 30(1): 40–60. doi: 10.1109/MSP.2011.2178495
    PAYAMI S and TUFVESSON F. Channel measurements and analysis for very large array systems at 2.6 GHz[C]. The 6th European Conference on Antennas and Propagation, Prague, Czech Republic, 2012: 433–437.
    GAO Xiang, TUFVESSON F, and EDFORS O. Massive MIMO channels - Measurements and models[C]. Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2013: 280–284.
    WU Shangbin, WANG Chengxiang, HAAS H, et al. A Non-stationary wideband channel model for massive MIMO communication systems[J]. IEEE Transactions on Wireless Communications, 2015, 14(3): 1434–1446. doi: 10.1109/TWC.2014.2366153
    NGUYEN S. Compressive sensing for multi-channel and large-scale MIMO networks[D]. [Ph.D. dissertation], Concordia University, 2013.
    QI Chenhao, HUANG Yongming, JIN Shi, et al. Sparse channel estimation based on compressed sensing for massive MIMO systems[C]. 2015 IEEE International Conference on Communications, London, UK, 2015: 4558–4563.
    CHEN Lei, LIU An, and YUAN Xiaojun. Structured turbo compressed sensing for massive MIMO channel estimation using a Markov prior[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4635–4639. doi: 10.1109/TVT.2017.2787708
    HOU Weikun and LIM C W. Structured compressive channel estimation for large-scale MISO-OFDM systems[J]. IEEE Communications Letters, 2014, 18(5): 765–768. doi: 10.1109/LCOMM.2014.030714.132630.
    NAN Yang, ZHANG Li, and SUN Xin. Weighted compressive sensing based uplink channel estimation for time division duplex massive Multi-Input Multi-Output systems[J]. IET Communications, 2017, 11(3): 355–361. doi: 10.1049/iet-com.2016.0625
    MASOOD M, AFIFY L H, and AL-NAFFOURI T Y. Efficient coordinated recovery of sparse channels in massive MIMO[J]. IEEE Transactions on Signal Processing, 2015, 63(1): 104–118. doi: 10.1109/TSP.2014.2369005
    PEDERSEN N L, MANCHÓN C N, and FLEURY B H. A fast iterative Bayesian inference algorithm for sparse channel estimation[C]. 2013 IEEE International Conference on Communications, Budapest, Hungary, 2013: 4591–4596.
    MA Jianpeng, LI Hongyan, ZHANG Shun, et al. Sparse Bayesian learning for the channel statistics of the massive MIMO systems[C]. 2017 IEEE Global Communications Conference, Singapore, 2017: 1–6.
    GUI Guan, XU Li, and SHAN Lin. Block Bayesian sparse learning algorithms with application to estimating channels in OFDM systems[C]. 2014 International Symposium on Wireless Personal Multimedia Communications, Sydney, Australia, 2014: 238–242.
    CHENG Xiantao, SUN Jingjing, and LI Shaoqian. Channel estimation for FDD multi-user massive MIMO: a variational Bayesian inference-based approach[J]. IEEE Transactions on Wireless Communications, 2017, 16(11): 7590–7602. doi: 10.1109/TWC.2017.2751046
    TIPPING M. Sparse Bayesian learning and the relevance vector machine[J]. The Journal of Machine Learning Research, 2001, 1: 211–244. doi: 10.1162/15324430152748236
    BLEI D M and JORDAN M I. Variational inference for dirichlet process mixtures[J]. Bayesian Analysis, 2006, 1(1): 121–143. doi: 10.1214/06-BA104
    梅素玉, 王飞, 周水庚. 狄利克雷过程混合模型、扩展模型及应用[J]. 科学通报, 2012, 57(34): 3243–3257.

    MEI Suyu, WANG Fei, and ZHOU Shuigeng. Dirichlet process mixture model, extensions and applications[J]. Chinese Science Bulletin (Chinese Version), 2012, 57(34): 3243–3257.
    WANG Lu, ZHAO Lifan, BI Guoan, et al. Novel wideband DOA estimation based on sparse bayesian learning with dirichlet process priors[J]. IEEE Transactions on Signal Processing, 2016, 64(2): 275–289. doi: 10.1109/TSP.2015.2481790
    TSE D and VISWANATH P. Fundamentals of Wireless Communication[M]. Cambridge: Cambridge University, 2004: 32–50, 348–352.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  2808
  • HTML全文浏览量:  1526
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-06
  • 修回日期:  2019-02-02
  • 网络出版日期:  2019-05-21
  • 刊出日期:  2020-02-19

目录

    /

    返回文章
    返回