Multi-populations Covariance Learning Differential Evolution Algorithm
-
摘要: 种群多样性与交叉算子在差分进化(DE)算法求解全局优化问题中具有重要作用,该文提出一种多种群协方差学习差分进化(MCDE)算法。首先,采用多种群机制的种群结构,利用每一子种群结合相应的变异策略保证进化过程个体多样性。然后,通过种群间的协方差学习,为交叉操作建立一个适当旋转的坐标系统;同时,使用自适应控制参数来平衡种群的勘测与收敛能力。最后,在单峰函数、多峰函数、偏移函数和高维函数的25个基准测试函数上进行测试,并同其他先进的进化算法对比,实验结果表明该文算法相较于其他算法在求解全局优化问题上达到最优效果。Abstract: The diversity of the population and the crossover operator algorithm play an important role in solving global optimization problems in Differential Evolution (DE). The Multi-poplutions Covariance learning Differential Evolution (MCDE) algorithm is proposed. Firstly, the population structure is a multi-poplutions mechanism, and each subpopulation combines the corresponding mutation strategy to ensure the individual diversity in the evolutionary process. Then, the covariance learning establishes a proper rotation coordinate system for the crossover operation in the population. At the same time, the adaptive control parameters are used to balance the ability of population survey and convergence. Finally, the proposed algorithm is conducted on 25 benchmark functions including unimodal, multimodal, shifted and high-dimensional test functions and compared with the state-of-the-art evolutionary algorithms. The experimental results show that the proposed algorithm compared with other algorithms has the best effect on solving the global optimization problem.
-
表 1 在D=30下3种算法与MCDE的Wilcoxon’s检测结果比较
比较算法 R+ R – P值 $\alpha $=0.05 $\alpha $=0.10 JADE 240.5 59.5 0.007012 是 是 CoDE 264.5 60.5 0.005181 是 是 CoBiDE 251.0 74.0 0.016633 是 是 表 2 在D=30下各算法的Friedman平均排名
算法 显著值 最终排名 JADE 3.78 3 CoDE 3.80 4 CoBiDE 3.34 2 MCDE 2.74 1 表 3 30次独立运行在4种算法的最优解平均值及标准差
函数 JADE CoDE CoBiDE MCDE F1 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00≈ 0.00E+00±0.00E+00 F2 1.26E–28±1.22E–28+ 6.77E–15±3.44E–15– 1.60E–12±2.90E–12– 8.49E–28±3.75E–28 F3 8.42E+03±6.58E+03– 5.65E+05±5.66E+04– 7.26E+04±5.64E+04– 2.74E–12±2.82E–11 F4 4.13E–16±3.45E–16– 6.21E–03±4.67E–02– 1.16E–03±2.74E–03– 7.57E–22±4.26E–21 F5 7.59E–08±5.65E–07– 3.16E+02±3.62E+02– 8.03E+02±1.51E+01– 5.38E–10±7.12E–10 F6 1.16E+01±3.16E+01– 3.32E–01±6.57E–01– 4.13E–02±9.21E–02+ 3.19E–01±1.09E–01 F7 8.27E–03±8.22E–03– 7.39E–03±6.45E–03– 1.77E–03±3.73E–03– 1.52E–03±4.11E–03 F8 2.09E+01±1.68E–01≈ 2.01E+01±1.25E–01+ 2.07E+01±3.75E–01+ 2.09E+01±4.21E–02 F9 0.00E+00±0.00E+00+ 0.00E+00±0.00E+00+ 0.00E+00±0.00E+00+ 2.64E–07±5.87E–07 F10 2.42E+01±5.44E+00– 4.21E+01±2.84E+01– 4.41E+01±1.29E+01– 2.28E+01±4.27E+00 F11 2.57E+01±2.21E+00– 1.24E+01±3.55E+00+ 5.62E+00±2.19E+00+ 1.51E+01±6.81e+00 F12 6.45E+03±2.89E+03– 3.21E+03±4.48E+03– 2.94E+03±3.93E+03– 2.12E+03±1.34E+03 F13 1.47E+00±1.15E–01+ 1.66E+00±3.25E–01+ 2.64E+00±1.13E+00– 1.74E+00±2.04E–01 F14 1.23E+01±3.21E–01≈ 1.23E+01±3.56E–01≈ 1.23E+01±4.90E–01≈ 1.23E+01±2.66E–01 F15 3.61E+02±2.24E+02+ 4.00E+02±5.24E+01≈ 4.04E+02±5.03E+01– 4.00E+02±1.09E+02 F16 9.33E+01±1.31E+02– 7.25E+01±6.22E+01+ 7.38E+01±3.66E+01– 5.37E+01±3.01E+01 F17 1.21E+02±1.08E+02– 7.16E+01±2.35E+01– 7.25E+01±2.02e+01– 6.36E+01±6.41E+01 F18 9.04E+02±1.24E–01≈ 9.04E+02±1.34E+00≈ 9.03E+02±1.05E+01≈ 9.03E+02±6.01E–01 F19 9.04E+02±8.32E+00≈ 9.04E+02±3.22E–01≈ 9.03E+02±1.04E+01≈ 9.03E+02±2.31E–01 F20 9.04E+02±7.65E–01≈ 9.04E+02±7.11E–01≈ 9.04E+02±5.95E–01≈ 9.03E+02±2.45E–01 F21 5.00E+02±4.67E–13≈ 5.00E+02±4.68E–13≈ 5.00E+02±4.62E–13≈ 5.00E+02±4.51E–14 F22 8.68E+02±2.24E+01≈ 8.78E+02±3.54E+01≈ 8.69E+02±2.80E+01≈ 8.69E+02±1.89E+01 F23 5.48E+02±8.62E+01– 5.34E+02±4.45E–04≈ 5.34E+02±1.30E–04≈ 5.34E+02±2.49E–13 F24 2.00E+02±2.12E–14≈ 2.00E+02±2.62E–14≈ 2.00E+02±2.90E–14≈ 2.00E+02±2.90E–14 F25 2.11E+02±7.35E–01– 2.11E+02±6.82E–01– 2.10E+02±7.73E–01– 2.09E+02±2.78E–01 +/–/≈ 3/13/9 5/10/10 4/13/8 表 4 30次独立运行在CLPSO, CMA-ES, GL-25, MCDE最优解平均值及标准差
Function CLPSO CMA-ES GL-25 MCDE F1 0.00E+00±0.00e+00≈ 1.58E–25±3.35E–26– 5.60E–27±1.76E–26– 0.00E+00±0.00E+00 F2 8.40E+02±1.90E+02– 1.12E–24±2.93E–25– 4.04E+01±6.28E+01– 8.49E–28±3.75E–28 F3 1.42E+07±4.19E+06– 5.54E–21±1.69E–21+ 2.19E+06±1.08E+06– 2.74E–12±2.82E–11 F4 6.99E+03±1.73E+03– 9.15E+05±2.16E+06– 9.07E+02±4.25E+02– 7.57E–22±4.26E–21 F5 3.86E+03±4.35E+02– 2.77E–10±5.04E–11+ 2.51E+03±1.96E+02– 5.38E–10±7.12E–10 F6 4.16E+00±3.48E+00– 4.78E–01±1.32E+00– 2.15E+01±1.17E+00– 3.19E–01±1.09E–01 F7 4.51E–01±8.47E–02– 1.82E–03±4.33E–03– 2.78E–02±3.62E–02– 1.52E–03±4.11E–03 F8 2.09E+01±4.41E–02– 2.03E+01±5.72E–01+ 2.09E+01±5.94E–02– 2.09E+01±4.21E–02 F9 0.00e+00±0.00e+00+ 4.45E+02±7.12E+01– 2.45E+01±7.35E+00– 2.64E–07±5.87E–07 F10 1.04E+02±1.53E+01– 4.63E+01±1.16E+01– 1.42E+02±6.45E+01– 2.28E+01±4.27E+00 F11 2.60E+01±1.63E+00– 7.11E+00±2.14E+00+ 3.27E+01±7.79E+00– 1.51E+01±6.81e+00 F12 1.79E+04±5.24E+03– 1.26E+04±1.74E+04– 6.53E+04±4.69E+04– 2.12E+03±1.34E+03 F13 2.06E+00±2.15E–01– 3.43E+00±7.60E–01– 6.23E+00±4.88E+00– 1.74E+00±2.04E–01 F14 1.28E+01±2.48E–01– 1.47E+01±3.31E–01– 1.31E+01±1.84E–01– 1.23E+01±2.66E–01 F15 5.77E+01±2.76E+01– 5.55E+02±3.32E+02– 3.04E+02±1.99E+01+ 4.00E+02±1.09E+02 F16 1.74E+02±2.82E+01– 2.98E+02±2.08E+02– 1.32E+02±7.60E+01– 5.37E+01±3.01E+01 F17 2.46E+02±4.81E+01– 4.43E+02±3.34E+02– 1.61E+02±6.80E+01– 6.36E+01±6.41E+01 F18 9.13E+02±1.42E+00– 9.04E+02±3.01E–01≈ 9.07E+02±1.48E+00– 9.03E+02±6.01E–01 F19 9.14E+02±1.45E+00– 9.16E+02±6.03E+01– 9.06E+02±1.24E+00– 9.03E+02±2.31E–01 F20 9.14E+02±3.62E+00– 9.04E+02±2.71E–01≈ 9.07E+02±1.35E+00– 9.03E+02±2.45E–01 F21 5.00E+02±3.39E–13≈ 5.00E+02±2.68E–12≈ 5.00E+02±4.83E–13≈ 5.00E+02±4.51E–14 F22 9.72E+02±1.20E+01– 8.26E+02±1.46E+01+ 9.28E+02±7.04E+01– 8.69E+02±1.89E+01 F23 5.34E+02±2.19E–04≈ 5.36E+02±5.44E+00≈ 5.34E+02±4.66E–04≈ 5.34E+02±2.49E–13 F24 2.00E+02±1.49E–12≈ 2.12E+02±6.00E+01– 2.00E+02±5.52E–11≈ 2.00E+02±2.90E–14 F25 2.00E+02±1.96E+00+ 2.07E+02±6.07E+00≈ 2.17E+02±1.36E–01– 2.09E+02±2.78E–01 +/–/≈ 2/19/4 5/15/5 1/21/3 -
STORN R and PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341–359. doi: 10.1023/A:1008202821328 PARK S Y and LEE J J. Stochastic opposition-based learning using a beta distribution in differential evolution[J]. IEEE Transactions on Cybernetics, 2016, 46(10): 2184–2194. doi: 10.1109/TCYB.2015.2469722 ZHANG Xin and ZHANG Xiu. Improving differential evolution by differential vector archive and hybrid repair method for global optimization[J]. Soft Computing, 2017, 21(23): 7107–7116. doi: 10.1007/s00500-016-2253-4 SALLAM K M, ELSAYED S M, SARKER R A, et al. Landscape-based adaptive operator selection mechanism for differential evolution[J]. Information Sciences, 2017, 418–419: 383–404. doi: 10.1016/j.ins.2017.08.028 MOHAMED A W and SUGANTHAN P N. Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation[J]. Soft Computing, 2018, 22(10): 3215–3235. doi: 10.1007/s00500-017-2777-2 YANG Ming, LI Changhe, CAI Zhihua, et al. Differential evolution with auto-enhanced population diversity[J]. IEEE Transactions on Cybernetics, 2015, 45(2): 302–315. doi: 10.1109/TCYB.2014.2339495 MALLIPEDDI R, SUGANTHAN P N, PAN Q K, et al. Differential evolution algorithm with ensemble of parameters and mutation strategies[J]. Applied Soft Computing, 2011, 11(2): 1679–1696. doi: 10.1016/j.asoc.2010.04.024 BREST J, GREINER S, BOSKOVIC B, et al. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 646–657. doi: 10.1109/TEVC.2006.872133 QIN K A, HUANG V L, and SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 398–417. doi: 10.1109/TEVC.2008.927706 ZHANG Jingqiao and SANDERSON A C. JADE: Adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945–958. doi: 10.1109/TEVC.2009.2014613 WANG Yong, CAI Zixing, and ZHANG Qingfu. Differential evolution with composite trial vector generation strategies and control parameters[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 55–66. doi: 10.1109/TEVC.2010.2087271 WANG Yong, LI Hanxiong, HUANG Tingwen, et al. Differential evolution based on covariance matrix learning and bimodal distribution parameter setting[J]. Applied Soft Computing, 2014, 18: 232–247. doi: 10.1016/j.asoc.2014.01.038 WANG Jiahai, LIAO Jianjun, ZHOU Ying, et al. Differential evolution enhanced with multiobjective sorting-based mutation operators[J]. IEEE Transactions on Cybernetics, 2017, 44(12): 2792–2805. doi: 10.1109/TCYB.2014.2316552 WU Guohua, MALLIPEDDI R, SUGANTHAN P N, et al. Differential evolution with multi-population based ensemble of mutation strategies[J]. Information Sciences, 2016, 329: 329–345. doi: 10.1016/j.ins.2015.09.009 XUE Yu, JIANG Jiongming, ZHAO Binping, et al. A self-adaptive artificial bee colony algorithm based on global best for global optimization[J]. Soft Computing, 2018, 22(9): 2935–2952. doi: 10.1007/s00500-017-2547-1 KIRAN M S and BABALIK A. Improved artificial bee colony algorithm for continuous optimization problems[J]. Journal of Computer and Communications, 2014, 2: 108–116. doi: 10.4236/jcc.2014.24015 DU Wenbo, YING Wen, YAN Gang, et al. Heterogeneous strategy particle swarm optimization[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64(4): 467–471. doi: 10.1109/TCSII.2016.2595597 DONG Wenyong, KANG Lanlan, and ZHANG Wensheng. Opposition-based particle swarm optimization with adaptive mutation strategy[J]. Soft Computing, 2017, 21(17): 5081–5090. doi: 10.1007/s00500-016-2102-5 HAN Honggui, LU Wei, and QIAO Junfei. An adaptive multiobjective particle swarm optimization based on multiple adaptive methods[J]. IEEE Transactions on Cybernetics, 2017, 47(9): 2754–2767. doi: 10.1109/TCYB.2017.2692385 HASSANAT A B A and ALKAFAWEEN E. On enhancing genetic algorithms using new crossovers[J]. International Journal of Computer Applications in Technology, 2018, 55(3): 202–212. doi: 10.1504/IJCAT.2017.10005868 SUGANTHAN P N, HANSEN N, LIANG J J, et al. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization[R]. Technical Report, KanGAL Report #2005005, 2005: 1–50. LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281–295. doi: 10.1109/TEVC.2005.857610 HANSEN N and OSTERMEIER A. Completely derandomized self-adaptation in evolution strategies[J]. Evolutionary Computation, 2001, 9(2): 159–195. doi: 10.1162/106365601750190398 GARCíA-MARTíNEZ C, LOZANO M, HERRERA F, et al. Global and local real-coded genetic algorithms based on parent-centric crossover operators[J]. European Journal of Operational Research, 2008, 185(3): 1088–1113. doi: 10.1016/j.ejor.2006.06.043