高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多种群协方差学习差分进化算法

杜永兆 范宇凌 柳培忠 唐加能 骆炎民

杜永兆, 范宇凌, 柳培忠, 唐加能, 骆炎民. 多种群协方差学习差分进化算法[J]. 电子与信息学报, 2019, 41(6): 1488-1495. doi: 10.11999/JEIT180670
引用本文: 杜永兆, 范宇凌, 柳培忠, 唐加能, 骆炎民. 多种群协方差学习差分进化算法[J]. 电子与信息学报, 2019, 41(6): 1488-1495. doi: 10.11999/JEIT180670
Yongzhao DU, Yuling FAN, Peizhong LIU, Jianeng TANG, Yanmin LUO. Multi-populations Covariance Learning Differential Evolution Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1488-1495. doi: 10.11999/JEIT180670
Citation: Yongzhao DU, Yuling FAN, Peizhong LIU, Jianeng TANG, Yanmin LUO. Multi-populations Covariance Learning Differential Evolution Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1488-1495. doi: 10.11999/JEIT180670

多种群协方差学习差分进化算法

doi: 10.11999/JEIT180670
基金项目: 国家自然科学基金(61605048, 61231002, 51075068),福建省教育厅项目(JA15035),泉州市科技局项目(2014Z103, 2015Z114),华侨大学研究生科研创新能力培养计划(1611422002)
详细信息
    作者简介:

    杜永兆:男,1985年生,副教授,博士,研究方向为智能计算、光学成像优化、医学图像处理

    范宇凌:男,1995年生,硕士生,研究方向为智能计算、图像处理

    柳培忠:男,1976年生,副教授,博士,研究方向为智能计算、视觉媒体检索、深度学习、信息安全

    唐加能:男,1983年生,副教授,博士,研究方向为智能计算、混沌同步和控制、网络同步和控制、信息安全、语音信号处理

    骆炎民:男,1975年生,副教授,博士,研究方向为机器学习、图像处理、智能计算、模式识别

    通讯作者:

    唐加能 2812280164@qq.com

  • 中图分类号: TP18

Multi-populations Covariance Learning Differential Evolution Algorithm

Funds: The National Natural Science Foundation of China (61605048, 61231002, 51075068), The Fujian Provincial Department of Education Project (JA15035), The Quanzhou Science and Technology Bureau Project (2014Z103, 2015Z114), Huaqiao University Graduate Research Innovation Capacity Development Program Funding Project (1611422002)
  • 摘要: 种群多样性与交叉算子在差分进化(DE)算法求解全局优化问题中具有重要作用,该文提出一种多种群协方差学习差分进化(MCDE)算法。首先,采用多种群机制的种群结构,利用每一子种群结合相应的变异策略保证进化过程个体多样性。然后,通过种群间的协方差学习,为交叉操作建立一个适当旋转的坐标系统;同时,使用自适应控制参数来平衡种群的勘测与收敛能力。最后,在单峰函数、多峰函数、偏移函数和高维函数的25个基准测试函数上进行测试,并同其他先进的进化算法对比,实验结果表明该文算法相较于其他算法在求解全局优化问题上达到最优效果。
  • 图  1  种群进化过程坐标系

    图  2  4种演化算法在8个测试函数上的平均函数误差

    表  1  D=30下3种算法与MCDE的Wilcoxon’s检测结果比较

    比较算法R+RP$\alpha $=0.05$\alpha $=0.10
    JADE240.559.50.007012
    CoDE264.560.50.005181
    CoBiDE251.074.00.016633
    下载: 导出CSV

    表  2  D=30下各算法的Friedman平均排名

    算法显著值最终排名
    JADE3.783
    CoDE3.804
    CoBiDE3.342
    MCDE2.741
    下载: 导出CSV

    表  3  30次独立运行在4种算法的最优解平均值及标准差

    函数JADECoDECoBiDEMCDE
    F10.00E+00±0.00E+00≈0.00E+00±0.00E+00≈0.00E+00±0.00E+00≈0.00E+00±0.00E+00
    F21.26E–28±1.22E–28+6.77E–15±3.44E–15–1.60E–12±2.90E–12–8.49E–28±3.75E–28
    F38.42E+03±6.58E+03–5.65E+05±5.66E+04–7.26E+04±5.64E+04–2.74E–12±2.82E–11
    F44.13E–16±3.45E–16–6.21E–03±4.67E–02–1.16E–03±2.74E–03–7.57E–22±4.26E–21
    F57.59E–08±5.65E–07–3.16E+02±3.62E+02–8.03E+02±1.51E+01–5.38E–10±7.12E–10
    F61.16E+01±3.16E+01–3.32E–01±6.57E–01–4.13E–02±9.21E–02+3.19E–01±1.09E–01
    F78.27E–03±8.22E–03–7.39E–03±6.45E–03–1.77E–03±3.73E–03–1.52E–03±4.11E–03
    F82.09E+01±1.68E–01≈2.01E+01±1.25E–01+2.07E+01±3.75E–01+2.09E+01±4.21E–02
    F90.00E+00±0.00E+00+0.00E+00±0.00E+00+0.00E+00±0.00E+00+2.64E–07±5.87E–07
    F102.42E+01±5.44E+00–4.21E+01±2.84E+01–4.41E+01±1.29E+01–2.28E+01±4.27E+00
    F112.57E+01±2.21E+00–1.24E+01±3.55E+00+5.62E+00±2.19E+00+1.51E+01±6.81e+00
    F126.45E+03±2.89E+03–3.21E+03±4.48E+03–2.94E+03±3.93E+03–2.12E+03±1.34E+03
    F131.47E+00±1.15E–01+1.66E+00±3.25E–01+2.64E+00±1.13E+00–1.74E+00±2.04E–01
    F141.23E+01±3.21E–01≈1.23E+01±3.56E–01≈1.23E+01±4.90E–01≈1.23E+01±2.66E–01
    F153.61E+02±2.24E+02+4.00E+02±5.24E+01≈4.04E+02±5.03E+01–4.00E+02±1.09E+02
    F169.33E+01±1.31E+02–7.25E+01±6.22E+01+7.38E+01±3.66E+01–5.37E+01±3.01E+01
    F171.21E+02±1.08E+02–7.16E+01±2.35E+01–7.25E+01±2.02e+01–6.36E+01±6.41E+01
    F189.04E+02±1.24E–01≈9.04E+02±1.34E+00≈9.03E+02±1.05E+01≈9.03E+02±6.01E–01
    F199.04E+02±8.32E+00≈9.04E+02±3.22E–01≈9.03E+02±1.04E+01≈9.03E+02±2.31E–01
    F209.04E+02±7.65E–01≈9.04E+02±7.11E–01≈9.04E+02±5.95E–01≈9.03E+02±2.45E–01
    F215.00E+02±4.67E–13≈5.00E+02±4.68E–13≈5.00E+02±4.62E–13≈5.00E+02±4.51E–14
    F228.68E+02±2.24E+01≈8.78E+02±3.54E+01≈8.69E+02±2.80E+01≈8.69E+02±1.89E+01
    F235.48E+02±8.62E+01–5.34E+02±4.45E–04≈5.34E+02±1.30E–04≈5.34E+02±2.49E–13
    F242.00E+02±2.12E–14≈2.00E+02±2.62E–14≈2.00E+02±2.90E–14≈2.00E+02±2.90E–14
    F252.11E+02±7.35E–01–2.11E+02±6.82E–01–2.10E+02±7.73E–01–2.09E+02±2.78E–01
    +/–/≈3/13/95/10/104/13/8
    下载: 导出CSV

    表  4  30次独立运行在CLPSO, CMA-ES, GL-25, MCDE最优解平均值及标准差

    FunctionCLPSOCMA-ESGL-25MCDE
    F10.00E+00±0.00e+00≈1.58E–25±3.35E–26–5.60E–27±1.76E–26–0.00E+00±0.00E+00
    F28.40E+02±1.90E+02–1.12E–24±2.93E–25–4.04E+01±6.28E+01–8.49E–28±3.75E–28
    F31.42E+07±4.19E+06–5.54E–21±1.69E–21+2.19E+06±1.08E+06–2.74E–12±2.82E–11
    F46.99E+03±1.73E+03–9.15E+05±2.16E+06–9.07E+02±4.25E+02–7.57E–22±4.26E–21
    F53.86E+03±4.35E+02–2.77E–10±5.04E–11+2.51E+03±1.96E+02–5.38E–10±7.12E–10
    F64.16E+00±3.48E+00–4.78E–01±1.32E+00–2.15E+01±1.17E+00–3.19E–01±1.09E–01
    F74.51E–01±8.47E–02–1.82E–03±4.33E–03–2.78E–02±3.62E–02–1.52E–03±4.11E–03
    F82.09E+01±4.41E–02–2.03E+01±5.72E–01+2.09E+01±5.94E–02–2.09E+01±4.21E–02
    F90.00e+00±0.00e+00+4.45E+02±7.12E+01–2.45E+01±7.35E+00–2.64E–07±5.87E–07
    F101.04E+02±1.53E+01–4.63E+01±1.16E+01–1.42E+02±6.45E+01–2.28E+01±4.27E+00
    F112.60E+01±1.63E+00–7.11E+00±2.14E+00+3.27E+01±7.79E+00–1.51E+01±6.81e+00
    F121.79E+04±5.24E+03–1.26E+04±1.74E+04–6.53E+04±4.69E+04–2.12E+03±1.34E+03
    F132.06E+00±2.15E–01–3.43E+00±7.60E–01–6.23E+00±4.88E+00–1.74E+00±2.04E–01
    F141.28E+01±2.48E–01–1.47E+01±3.31E–01–1.31E+01±1.84E–01–1.23E+01±2.66E–01
    F155.77E+01±2.76E+01–5.55E+02±3.32E+02–3.04E+02±1.99E+01+4.00E+02±1.09E+02
    F161.74E+02±2.82E+01–2.98E+02±2.08E+02–1.32E+02±7.60E+01–5.37E+01±3.01E+01
    F172.46E+02±4.81E+01–4.43E+02±3.34E+02–1.61E+02±6.80E+01–6.36E+01±6.41E+01
    F189.13E+02±1.42E+00–9.04E+02±3.01E–01≈9.07E+02±1.48E+00–9.03E+02±6.01E–01
    F199.14E+02±1.45E+00–9.16E+02±6.03E+01–9.06E+02±1.24E+00–9.03E+02±2.31E–01
    F209.14E+02±3.62E+00–9.04E+02±2.71E–01≈9.07E+02±1.35E+00–9.03E+02±2.45E–01
    F215.00E+02±3.39E–13≈5.00E+02±2.68E–12≈5.00E+02±4.83E–13≈5.00E+02±4.51E–14
    F229.72E+02±1.20E+01–8.26E+02±1.46E+01+9.28E+02±7.04E+01–8.69E+02±1.89E+01
    F235.34E+02±2.19E–04≈5.36E+02±5.44E+00≈5.34E+02±4.66E–04≈5.34E+02±2.49E–13
    F242.00E+02±1.49E–12≈2.12E+02±6.00E+01–2.00E+02±5.52E–11≈2.00E+02±2.90E–14
    F252.00E+02±1.96E+00+2.07E+02±6.07E+00≈2.17E+02±1.36E–01–2.09E+02±2.78E–01
    +/–/≈2/19/45/15/51/21/3
    下载: 导出CSV
  • STORN R and PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341–359. doi: 10.1023/A:1008202821328
    PARK S Y and LEE J J. Stochastic opposition-based learning using a beta distribution in differential evolution[J]. IEEE Transactions on Cybernetics, 2016, 46(10): 2184–2194. doi: 10.1109/TCYB.2015.2469722
    ZHANG Xin and ZHANG Xiu. Improving differential evolution by differential vector archive and hybrid repair method for global optimization[J]. Soft Computing, 2017, 21(23): 7107–7116. doi: 10.1007/s00500-016-2253-4
    SALLAM K M, ELSAYED S M, SARKER R A, et al. Landscape-based adaptive operator selection mechanism for differential evolution[J]. Information Sciences, 2017, 418–419: 383–404. doi: 10.1016/j.ins.2017.08.028
    MOHAMED A W and SUGANTHAN P N. Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation[J]. Soft Computing, 2018, 22(10): 3215–3235. doi: 10.1007/s00500-017-2777-2
    YANG Ming, LI Changhe, CAI Zhihua, et al. Differential evolution with auto-enhanced population diversity[J]. IEEE Transactions on Cybernetics, 2015, 45(2): 302–315. doi: 10.1109/TCYB.2014.2339495
    MALLIPEDDI R, SUGANTHAN P N, PAN Q K, et al. Differential evolution algorithm with ensemble of parameters and mutation strategies[J]. Applied Soft Computing, 2011, 11(2): 1679–1696. doi: 10.1016/j.asoc.2010.04.024
    BREST J, GREINER S, BOSKOVIC B, et al. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(6): 646–657. doi: 10.1109/TEVC.2006.872133
    QIN K A, HUANG V L, and SUGANTHAN P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(2): 398–417. doi: 10.1109/TEVC.2008.927706
    ZHANG Jingqiao and SANDERSON A C. JADE: Adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945–958. doi: 10.1109/TEVC.2009.2014613
    WANG Yong, CAI Zixing, and ZHANG Qingfu. Differential evolution with composite trial vector generation strategies and control parameters[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 55–66. doi: 10.1109/TEVC.2010.2087271
    WANG Yong, LI Hanxiong, HUANG Tingwen, et al. Differential evolution based on covariance matrix learning and bimodal distribution parameter setting[J]. Applied Soft Computing, 2014, 18: 232–247. doi: 10.1016/j.asoc.2014.01.038
    WANG Jiahai, LIAO Jianjun, ZHOU Ying, et al. Differential evolution enhanced with multiobjective sorting-based mutation operators[J]. IEEE Transactions on Cybernetics, 2017, 44(12): 2792–2805. doi: 10.1109/TCYB.2014.2316552
    WU Guohua, MALLIPEDDI R, SUGANTHAN P N, et al. Differential evolution with multi-population based ensemble of mutation strategies[J]. Information Sciences, 2016, 329: 329–345. doi: 10.1016/j.ins.2015.09.009
    XUE Yu, JIANG Jiongming, ZHAO Binping, et al. A self-adaptive artificial bee colony algorithm based on global best for global optimization[J]. Soft Computing, 2018, 22(9): 2935–2952. doi: 10.1007/s00500-017-2547-1
    KIRAN M S and BABALIK A. Improved artificial bee colony algorithm for continuous optimization problems[J]. Journal of Computer and Communications, 2014, 2: 108–116. doi: 10.4236/jcc.2014.24015
    DU Wenbo, YING Wen, YAN Gang, et al. Heterogeneous strategy particle swarm optimization[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64(4): 467–471. doi: 10.1109/TCSII.2016.2595597
    DONG Wenyong, KANG Lanlan, and ZHANG Wensheng. Opposition-based particle swarm optimization with adaptive mutation strategy[J]. Soft Computing, 2017, 21(17): 5081–5090. doi: 10.1007/s00500-016-2102-5
    HAN Honggui, LU Wei, and QIAO Junfei. An adaptive multiobjective particle swarm optimization based on multiple adaptive methods[J]. IEEE Transactions on Cybernetics, 2017, 47(9): 2754–2767. doi: 10.1109/TCYB.2017.2692385
    HASSANAT A B A and ALKAFAWEEN E. On enhancing genetic algorithms using new crossovers[J]. International Journal of Computer Applications in Technology, 2018, 55(3): 202–212. doi: 10.1504/IJCAT.2017.10005868
    SUGANTHAN P N, HANSEN N, LIANG J J, et al. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization[R]. Technical Report, KanGAL Report #2005005, 2005: 1–50.
    LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281–295. doi: 10.1109/TEVC.2005.857610
    HANSEN N and OSTERMEIER A. Completely derandomized self-adaptation in evolution strategies[J]. Evolutionary Computation, 2001, 9(2): 159–195. doi: 10.1162/106365601750190398
    GARCíA-MARTíNEZ C, LOZANO M, HERRERA F, et al. Global and local real-coded genetic algorithms based on parent-centric crossover operators[J]. European Journal of Operational Research, 2008, 185(3): 1088–1113. doi: 10.1016/j.ejor.2006.06.043
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  2245
  • HTML全文浏览量:  1059
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-06
  • 修回日期:  2019-01-28
  • 网络出版日期:  2019-02-18
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回