高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新型卫星导航信号波形畸变特性评估新方法

贺成艳 卢晓春 郭际

贺成艳, 卢晓春, 郭际. 一种新型卫星导航信号波形畸变特性评估新方法[J]. 电子与信息学报, 2019, 41(5): 1017-1024. doi: 10.11999/JEIT180656
引用本文: 贺成艳, 卢晓春, 郭际. 一种新型卫星导航信号波形畸变特性评估新方法[J]. 电子与信息学报, 2019, 41(5): 1017-1024. doi: 10.11999/JEIT180656
Chengyan HE, Xiaochun LU, Ji GUO. Evil Waveform Evaluating Method for New GNSS Signals[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1017-1024. doi: 10.11999/JEIT180656
Citation: Chengyan HE, Xiaochun LU, Ji GUO. Evil Waveform Evaluating Method for New GNSS Signals[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1017-1024. doi: 10.11999/JEIT180656

一种新型卫星导航信号波形畸变特性评估新方法

doi: 10.11999/JEIT180656
基金项目: 国家自然科学基金青年基金(61501430),地理信息工程国家重点实验室开放基金(SKLGIE2017-M-2-2)
详细信息
    作者简介:

    贺成艳:女,1986年生,副研究员,硕士生导师,研究方向为卫星导航信号接收处理、信号质量评估等

    卢晓春:女,1970年生,研究员,研究方向为卫星导航定位系统设计和建设

    郭际:男,1955年生,研究员,研究方向为天文测时、数据误差分析、导航系统建设等

    通讯作者:

    贺成艳 hechengyan@ntsc.ac.cn

  • 中图分类号: TN911.6

Evil Waveform Evaluating Method for New GNSS Signals

Funds: The National Nature Science Foundation of China (61501430), The State Key Laboratory of Geo-information Engineering Open Foundation (SKLGIE2017-M-2-2)
  • 摘要:

    全球卫星导航系统(GNSS)导航信号的波形特性将会影响导航信号质量,而信号质量优劣则直接决定了整个GNSS的服务性能极限。传统的波形畸变评估方法主要针对传统相移键控(PSK)调制信号的波形幅度和宽度开展研究,而忽视了波形不对称对跟踪误差和测距误差带来的影响。该文在国际民航组织(ICAO)所采用的传统测距码波形分析模型TMA/TMB/TMC基础上,给出了适用于各种新型二进制偏置载波(BOC)调制的波形畸变分析扩展模型。接着提出能够精细分析波形上升下降沿对称特性(WRaFES)分析模型,并从时域波形、相关函数、S曲线过零点偏差3个方面,深入仿真分析了WRaFES模型的性能特点。最后,以北斗试验卫星M1-S B1Cd信号为例,给出了基于WRaFES模型及相关曲线特性的实测分析结果。研究表明:该方法能够精确分析导航信号波形不对称性及对用户带来的影响,研究成果可为新型卫星导航信号评估提供一种新方法和新思路,同时还可为GNSS用户接收机相关器间隔参数的合理选取提供建议和技术支撑。

  • 图  1  WRaFES波形不对称分析

    图  2  BOC(1, 1)数字畸变功率谱:$\varDelta = 0.06{T_c}$

    图  3  WRaFES波形不对称分析

    图  4  BOC (1, 1) SQM相关器输出

    图  5  码片上升下降沿不对称带来的SCB影响分析

    图  6  分离后的BDS M1-S B1Cd基带信号波形

    表  1  WRaFES参数列表

    $\Delta \Delta $测试参数对称性面积比参数:
    $M1 = \frac{{({W_{ - 0.50}} - {W_{0.50}}) - ({W_{ - 0.47}} - {W_{0.47}})}}{{{W_0}}}$$M2 = \frac{{({W_{ - 0.53}} - {W_{0.53}}) - ({W_{ - 0.50}} - {W_{0.50}})}}{{{W_0}}}$$M24 = 20 \times \lg \left[ {\displaystyle\frac{{\displaystyle\int_{t = - 0.60{T_{\rm c}}}^{t = - 0.40{T_{\rm c}}} {s(t){\rm dt}} }}{{\displaystyle\int_{t = 0.40{T_{\rm c}}}^{t = 0.60{T_{\rm c}}} {s(t){\rm dt}} }}} \right]$
    对称性评价参数:非对称性评价参数:
    $M3 = \displaystyle\frac{{({W_{ - 0.40}} - {W_{0.40}})}}{{{W_0}}}$ $M4 = \displaystyle\frac{{({W_{ - 0.43}} - {W_{0.43}})}}{{{W_0}}}$
    $M5 = \displaystyle\frac{{({W_{ - 0.47}} - {W_{0.47}})}}{{{W_0}}}$ $M6 = \displaystyle\frac{{({W_{ - 0.50}} - {W_{0.50}})}}{{{W_0}}}$
    $M7 = \displaystyle\frac{{({W_{ - 0.53}} - {W_{0.53}})}}{{{W_0}}}$ $M8 = \displaystyle\frac{{({W_{ - 0.57}} - {W_{0.57}})}}{{{W_0}}}$ $M9 = \displaystyle\frac{{({W_{ - 0.60}} - {W_{0.60}})}}{{{W_0}}}$
    $M10 = \displaystyle\frac{{{W_{ - 0.40}}}}{{{W_0}}}$ $M11 = \displaystyle\frac{{{W_{0.40}}}}{{{W_0}}}$ $M12 = \displaystyle\frac{{{W_{ - 0.43}}}}{{{W_0}}}$ $M13 = \displaystyle\frac{{{W_{0.43}}}}{{{W_0}}}$ $M14 = \displaystyle\frac{{{W_{ - 0.47}}}}{{{W_0}}}$
    $M15 = \displaystyle\frac{{{W_{0.47}}}}{{{W_0}}}$ $M16 = \displaystyle\frac{{{W_{-0.50}}}}{{{W_0}}}$ $M17 = \displaystyle\frac{{{W_{0.50}}}}{{{W_0}}}$ $M18 = \displaystyle\frac{{{W_{-0.53}}}}{{{W_0}}}$ $M19 = \displaystyle\frac{{{W_{0.53}}}}{{{W_0}}}$
    $M20 = \displaystyle\frac{{{W_{-0.57}}}}{{{W_0}}}$ $M21 = \displaystyle\frac{{{W_{0.57}}}}{{{W_0}}}$ $M22 = \displaystyle\frac{{{W_{-0.60}}}}{{{W_0}}}$ $M23 = \displaystyle\frac{{{W_{0.60}}}}{{{W_0}}}$
    下载: 导出CSV

    表  2  相关特性参数均值和方差

    参数${P_1}$${P_2}$${P_3}$${P_4}$${P_5}$${P_6}$${P_7}$
    均值0000000.85
    方差$\frac{{0.6}}{{2T\,(C/{N_0})}}$$\frac{{2.4}}{{2T\,(C/{N_0})}}$$\frac{{0.6}}{{2T\,(C/{N_0})}}$$\frac{{1.2}}{{2T\,(C/{N_0})}}$$\frac{{2.0}}{{2T\,(C/{N_0})}}$$\frac{{2.0}}{{2T\,(C/{N_0})}}$$\frac{{2.775}}{{2T\,(C/{N_0})}}$
    参数${P_8}$${P_9}$${P_{10}}$${P_{11}}$${P_{12}}$${P_{13}}$${P_{14}}$
    均值0.850.700.70–0.50–0.5000
    方差$\frac{{2.775}}{{2T\,(C/{N_0})}}$$\frac{{0.51}}{{2T\,(C/{N_0})}}$$\frac{{0.51}}{{2T\,(C/{N_0})}}$$\frac{{0.75}}{{2T\,(C/{N_0})}}$$\frac{{0.75}}{{2T\,(C/{N_0})}}$$\frac{{1.0}}{{2T\,(C/{N_0})}}$$\frac{{1.0}}{{2T\,(C/{N_0})}}$
    下载: 导出CSV

    表  3  BDS M1-S B1CdWRaFES 参数统计结果

    参数M1M2M5M6M7M24M14M15M16M17M18M19
    均值0.01320.01490.01180.00140.01620.00910.57750.58930.00100.00030.57660.5928
    标准差0.12330.13960.15680.12920.17081.61880.09420.13590.08960.09420.12230.1571
    参数M3M4M8M9M10M11M12M13M20M21M22M23
    均值0.00080.01100.03390.02471.03911.03830.93690.94810.93210.96591.04251.0673
    标准差0.24550.19990.25710.35100.15570.22940.10890.18090.19410.25570.27590.3286
    下载: 导出CSV

    表  4  BDS M1-S B1Cd实测相关特性参数统计结果

    参数P1P2P3P4P5P6P7
    均值0.0148–0.0002–0.00220.01140.0099–0.00480.8663
    标准差0.03520.04880.03690.03690.05260.07450.0076
    参数P8P9P10P11P12P13P14
    均值0.86980.71600.7060–0.5013–0.50990.01510.0211
    标准差0.00790.01210.01360.05930.06360.05760.0728
    下载: 导出CSV
  • 陈昌川, 周杨, 张天骐. TDDM-BOC信号组合码序列及信息序列盲估计[J]. 电子与信息学报, 2016, 38(11): 2760–2766. doi: 10.11999/JEIT160042

    CHEN Changchuan, ZHOU Yang, and ZHANG Tianqi. Blind estimation of the combination code sequence and information sequence for TDDM-BOC signal[J]. Journal of Electronics &Information Technology, 2016, 38(11): 2760–2766. doi: 10.11999/JEIT160042
    EDGAR C, CZOPEK F, and BARKER L B. A cooperative anomaly resolution on PRN-19[C]. Proceedings of 1999 Institute of Navigation GPS, Nashville, Tennessee, USA, 1999: 2269–2271.
    贺成艳, 郭际, 卢晓春, 等. GNSS导航信号常见畸变产生机理及对测距性能影响分析[J]. 系统工程与电子技术, 2015, 37(7): 1611–1620. doi: 10.3969/j.issn.1001-506X.2015.07.22

    HE Chengyan, GUO Ji, LU Xiaochun, et al. Generation mechanisms of GNSS navigation signal distortions and influence on ranging performance[J]. Systems Engineering and Electronics, 2015, 37(7): 1611–1620. doi: 10.3969/j.issn.1001-506X.2015.07.22
    PHELTS R E. Multicorrelator techniques for robust mitigation of threats to GPS signal quality[D]. [Ph.D. dissertation], Stanford University, 2001: 1–345.
    FONTANELLA D, PAONNI M, and EISSFELLER B. A novel evil waveforms threat model for new generation GNSS signals: theoretical analysis and performance[C]. Proceedings of the 20105th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing, Noordwijk, Netherlands, 2010: 1–8. doi: 10.1109/NAVITEC.2010.5708037.
    MISRA P and ENGE P. Global Positioning System: Signals, Measurements, and Performance[M]. 2nd ed. Lincoln, MA, Ganga-Jamuna Press, 2006: 1125–1134.
    JAHROMI A J, BROUMANDAN A, DANESHMAND S, et al. Galileo signal authenticity verification using signal quality monitoring methods[C]. Proceedings of 2016 International Conference on Localization and GNSS, Barcelona, Spain, 2016: 1–8. doi: 10.1109/ICL-GNSS.2016.7533684.
    贺成艳. GNSS空间信号质量评估方法研究及测距性能影响分析[D]. [博士论文], 中国科学院大学, 2013: 1–205.

    HE Chengyan. Research on evaluation methods of GNSS signal quality and the influence of GNSS signal on ranging performance[D]. [Ph.D. dissertation], University of Chinese Academy of Sciences, 2013: 1–205.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  2592
  • HTML全文浏览量:  1047
  • PDF下载量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-04
  • 修回日期:  2019-01-10
  • 网络出版日期:  2019-01-22
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回