A Design of Ultra-broad-band Miniaturized Matematerial Absorber Based on Loading Lumped Resistances
-
摘要: 为提高吸波体吸波效率,该文设计了一种基于集总电阻加载的小型化超宽带超材料吸波体结构,该结构通过纵向级联的方式,结合上下两层吸波体结构拓展了带宽。通过等效电路分析得到该吸波体在宽频带内具有良好的阻抗匹配,并通过电流分析验证了吸波机理。整个吸波体的单元大小仅为0.089
$\lambda_ {\rm{L}}$ ×0.089$\lambda_ {\rm{L}}$ ($\lambda_ {\rm{L}}$ 为该结构最低吸波频率所对应的波长)。厚度为0.078$\lambda_ {\rm{L}}$ 。仿真结果表明:在2.24~16.14 GHz吸波率始终大于90%,相对带宽达151%。制备相应实物并进行测试,实测结果与仿真结果基本吻合。Abstract: A metameterial absorber is designed, fabricated and experimentally demonstrated to realized ultra-wideband absorption based on loading lumped resistances to raise the efficiency of absorber. The proposed structure comprises of an upper absorber and an under absorber by longitudinal cascade to expand bandwidth. The analysis of equivalent circuit show that the absorber has good impedance matching in a wide frequency band and the mechanism of wave absorption is verified by current analysis. The size of the unit is only about 0.089$\lambda_ {\rm{L}}$ ×0.089$\lambda_ {\rm{L}}$ , where$\lambda_ {\rm{L}}$ is the wavelength of the lowest frequency, and the total thickness of the absorber is only 0.078$\lambda_ {\rm{L}}$ . Simulated and experimental results show that the absorber exhibits absorptivity above 90% from 2.24 GHz to 16.14 GHz, and the relative absorption bandwidth is about 151%. Measurement results show good agreement with the numerically simulated results.-
Key words:
- Matematerial /
- Ultra-wideband /
- Absorber /
- Lumped resistances
-
表 1 复合结构参数数值
参数 a b c d e f H1 H2 r s t u v 尺寸(mm) 12.0 11.8 3.9 6.2 1.7 3.4 7.0 1.0 4.1 1.0 6.1 12.0 2.5 -
LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402 FU Qiang, FAN Chengli, LI Sijia, et al. Ultra-broad band radar cross section reduction of waveguide slot antenna with metamaterials[J]. Radioengineering, 2016, 25(2): 241–246. doi: 10.13164/re.2016.0241 LIU Ying, LI Kun, JIA Yongtao, et al. Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 326–331. doi: 10.1109/TAP.2015.2497352 LI Sijia, CAO Xiangyu, LIU Tao, et al. Double-layer perfect metamaterial absorber and its application for RCS reduction of antenna[J]. Radioengineering, 2014, 23(1): 222–228. MISHRA N and CHAUDHARY R K. A miniaturized ZOR antenna with enhanced bandwidth for WiMAX applications[J]. Microwave and Optical Technology Letter, 2016, 58(1): 71–75. doi: 10.1002/mop.29494 BHATTACHARYYA S, GHOSH S, CHAURASIYA D, et al. Wide-angle broadband microwave metamaterial absorber with octave bandwidth[J]. IET Microwaves, Antennas & Propagation, 2015, 9(11): 1160–1166. doi: 10.1049/iet-map.2014.0632 GHOSH S, BHATTACHARYYA S, CHAURASIYA D, et al. An ultrawideband ultrathin metamaterial absorber based on circular split rings[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1172–1175. doi: 10.1109/LAWP.2015.2396302 BHATTACHARYYA S and SRIVASTAVA K V. Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator[J]. Journal of Applied Physics, 2014, 115(6): 064508. doi: 10.1063/1.4865273 LEE J and LIM S. Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance[J]. Electronics Letters, 2011, 47(1): 8–9. doi: 10.1049/el.2010.2770 WAKATSUCHI H, PAUL J, and CHRISTOPOULOS C. Performance of customizable cut-wire-based metamaterial absorbers: Absorbing mechanism and experimental demonstration[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(12): 5743–5752. doi: 10.1109/TAP.2012.2210180 TUONG P V, PARK J W, RHEE J Y, et al. Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials[J]. Applied Physics Letters, 2013, 102(8): 081122. doi: 10.1063/1.4794173 CHENG Yongzhi, NIE Yan, and GONG Rongzhou. A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films[J]. Optics & Laser Technology, 2013, 48: 415–421. LI Sijia, GAO Jun, CAO Xiangyu, et al. Wideband, thin, and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances[J]. Journal of Applied Physics, 2014, 116(4): 043710. doi: 10.1063/1.4891716 PAN Wu, YU Xuan, ZHANG Jun, et al. A novel design of broadband terahertz metamaterial absorber based on nested circle rings[J]. IEEE Photonics Technology Letters, 2016, 28(21): 2335–2338. doi: 10.1109/LPT.2016.2593699 JAMES J R, KINANY S J A, PEEL P D, et al. Leaky-wave multiple dichroic beamformers[J]. Electronics Letters, 1989, 25(18): 1209–1211. doi: 10.1049/el:19890811 ZUO Weiqing, YANG Yang, HE Xiaoxiang, et al. A miniaturized metamaterial absorber for ultrahigh-frequency RFID system[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 16: 329–332. doi: 10.1109/LAWP.2016.2574885 LI Long and LÜ Zhiyong. Ultra-wideband polarization-insensitive and wide-angle thin absorber based on resistive metasurfaces with three resonant modes[J]. Journal of Applied Physics, 2017, 122(5): 055104. doi: 10.1063/1.4997468 ZUO Weiqing, YANG Yang, HE Xiaoxiang, et al. An ultrawideband miniaturized metamaterial absorber in the ultrahigh-frequency range[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 928–931. doi: 10.1109/LAWP.2016.2614703 LEE J, YOO M, and LIM S. A study of ultra-thin single layer frequency selective surface microwave absorbers with three different bandwidths using double resonance[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(1): 221–230. doi: 10.1109/TAP.2014.2365826