高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应渐消记忆的蓝牙序列匹配定位算法

田增山 王阳 周牧 未平

田增山, 王阳, 周牧, 未平. 基于自适应渐消记忆的蓝牙序列匹配定位算法[J]. 电子与信息学报, 2019, 41(6): 1381-1388. doi: 10.11999/JEIT180637
引用本文: 田增山, 王阳, 周牧, 未平. 基于自适应渐消记忆的蓝牙序列匹配定位算法[J]. 电子与信息学报, 2019, 41(6): 1381-1388. doi: 10.11999/JEIT180637
Zengshan TIAN, Yang WANG, Mu ZHOU, Ping WEI. Adaptive Fading Memory Based Bluetooth Sequence Matching Localization Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1381-1388. doi: 10.11999/JEIT180637
Citation: Zengshan TIAN, Yang WANG, Mu ZHOU, Ping WEI. Adaptive Fading Memory Based Bluetooth Sequence Matching Localization Algorithm[J]. Journal of Electronics & Information Technology, 2019, 41(6): 1381-1388. doi: 10.11999/JEIT180637

基于自适应渐消记忆的蓝牙序列匹配定位算法

doi: 10.11999/JEIT180637
基金项目: 国家自然科学基金(61771083, 61704015),长江学者和创新团队发展计划基金(IRT1299),重庆市科委重点实验室专项经费,重庆市基础与前沿研究计划基金(cstc2017jcyjAX0380, cstc2015jcyjBX0065),重庆市高校优秀成果转化基金(KJZH17117),重庆市研究生科研创新项目(CYS17221),重庆市教委科学技术研究项目(KJ1704083)
详细信息
    作者简介:

    田增山:男,1968年生,教授,博士生导师,研究方向为移动通信、个人通信、GPS及蜂窝网定位技术等

    王阳:男,1992年生,硕士生,研究方向为无线定位技术

    周牧:男,1984年生,教授,研究方向为无线定位与导航技术、信号侦察与检测技术、凸优化与深度学习理论等

    未平:男,1992年生,硕士生,研究方向为无线定位技术

    通讯作者:

    王阳 1107919267@qq.com

  • 中图分类号: TN929.5

Adaptive Fading Memory Based Bluetooth Sequence Matching Localization Algorithm

Funds: The National Natural Science Foundation of China (61771083, 61704015), The Program for Changjiang Scholars and Innovative Research Team in University (IRT1299), The Special Fund of Chongqing Key Laboratory of CSTC, Fundamental and Frontier Research Project of Chongqing (cstc2017jcyjAX0380, cstc2015jcyjBX0065), The University Outstanding Achievement Transformation Project of Chongqing (KJZH17117), The Postgraduate Scientific Research and Innovation Project of Chongqing (CYS17221), The Scientific and Technological Research Foundation of Chongqing Municipal Education Commission (KJ1704083)
  • 摘要: 针对传统指纹定位算法建库耗时长和定位精度低的问题,该文提出一种基于自适应渐消记忆的蓝牙序列匹配定位算法。首先,利用行人航迹推算(PDR)和最近邻算法(NNA)对运动序列进行位置标定和接收信号强度(RSS)映射;然后,根据邻近位置的相关性,采用序列递归搜索算法构建指纹序列数据库;最后,通过自适应渐消记忆算法,并结合初始序列匹配度实现位置估计。实验结果表明,该算法在室内环境下能够获得较低的建库时间开销以及较高的定位精度。
  • 图  1  空旷大厅和走廊环境的平面结构

    图  2  建库时间对比

    图  3  不同速度不同n值的定位误差

    图  4  测试点定位误差

    图  5  同组数据定位误差CDF

    图  6  不同速度下行走3圈的定位轨迹

    图  7  蛇形曲线的定位轨迹

    图  8  定位误差CDF

    图  9  空旷环境的不同算法定位误差CDF

    图  10  复杂环境的不同算法定位误差CDF

    表  1  序列递归搜索算法伪代码

     算法:序列递归搜索
     输入:局部邻近性矩阵${\text{M}}$;初始数据库${\text{D}}$;指纹序列维度$n$。
     输出:指纹序列集${\text{R}}$。
     (1) 创建集合${\text{R}}$存储所有指纹序列,集合${\text{Q}}$存储临时指纹序列;
     (2) for ${\text{D}}$中的每一个指纹点$s$;
     (3)   将$s$添加到${\text{Q}}$中;
     (4)   自定义变量$p$;
     (5)   $p = n$;
     (6)  do
     (7)    $p = p - 1$;
     (8)    利用${\text{M}}$寻找与${\text{Q}}$中序列终点邻近的所有位置点;
     (9)    for 每一个邻近位置点$q$
     (10)    将$q$添加到${\text{Q}}$中,更新指纹序列;
     (11)   end for
     (12)  until $p = 0$;
     (13)  for Q中每一条序列${\text{u}}$
     (14)   if u中存在相同指纹点或对应信号存在$v$值
     (15)    将${\text{u}}$从${\text{Q}}$中剔除;
     (16)   else 在${\text{Q}}$中保留${\text{u}}$;
     (17)  end for
     (18)  将${\text{Q}}$中的所有指纹序列添加到${\text{R}}$中;
     (19)  将${\text{Q}}$置为空;
     (20) end for
    下载: 导出CSV

    表  2  不同环境下4种算法的定位误差

    实验环境算法类型平均误差(m)67%误差(m)90%误差(m)
    空旷大厅和走廊环境KNN3.464.035.91
    Inv-FP2.242.404.23
    iBILL2.332.623.94
    本文算法1.721.932.92
    室内复杂
    办公环境
    KNN3.123.815.23
    Inv-FP2.112.593.61
    iBILL2.032.513.24
    本文算法1.541.822.77
    下载: 导出CSV
  • VU T H N, RYU K H, and PARK N. A method for predicting future location of mobile user for location-based services system[J]. Computers & Industrial Engineering, 2009, 57(1): 91–105. doi: 10.1016/j.cie.2008.07.009
    GEZICI S, TIAN Zhi, GIANNAKIS G B, et al. Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks[J]. IEEE Signal Processing Magazine, 2005, 22(4): 70–84. doi: 10.1109/MSP.2005.1458289
    WANG Yixin, YE Qiang, CHENG Jie, et al. RSSI-based Bluetooth indoor localization[C]. Proceedings of the 2015 11th International Conference on Mobile Ad-Hoc and Sensor Networks, Shenzhen, China, 2015: 165–171. doi: 10.1109/MSN.2015.14.
    WILLEMSEN T, KELLER F, and STERNBERG H. Concept for building a MEMS based indoor localization system[C]. Proceedings of 2014 International Conference on Indoor Positioning and Indoor Navigation, Busan, South Korea, 2014: 1–10. doi: 10.1109/IPIN.2014.7275461.
    YANG Bo, LEI Yiqun, and YAN Bei. Distributed multi-human location algorithm using naive Bayes classifier for a binary pyroelectric infrared sensor tracking system[J]. IEEE Sensors Journal, 2016, 16(1): 216–223. doi: 10.1109/JSEN.2015.2477540
    KUNG H Y, CHAISIT S, and PHUONG N T M. Optimization of an RFID location identification scheme based on the neural network[J]. International Journal of Communication Systems, 2015, 28(4): 625–644. doi: 10.1002/dac.2692
    JEON W S and JEONG D G. Enhanced channel access for connection state of Bluetooth low energy networks[J]. IEEE Transactions on Vehicular Technology, 2017, 66(9): 8469–8481. doi: 10.1109/TVT.2017.2675915
    周牧, 王斌, 田增山, 等. 室内BLE/MEMS跨楼层融合定位算法[J]. 通信学报, 2017, 38(5): 2017076. doi: 10.11959/j.issn.1000-436x.2017076

    ZHOU Mu, WANG Bin, TIAN Zengshan, et al. Indoor BLE and MEMS based multi-floor fusion positioning algorithm[J]. Journal on Communications, 2017, 38(5): 2017076. doi: 10.11959/j.issn.1000-436x.2017076
    LIN C P, TANG S H, LIN C H, et al. An improved modeling of TDR signal propagation for measuring complex dielectric permittivity[J]. Journal of Earth Science, 2015, 26(6): 827–834. doi: 10.1007/s12583-015-0599-7
    王艳丽, 杨如民, 余成波, 等. 相关性匹配蓝牙信标位置指纹库的室内定位[J]. 电讯技术, 2017, 57(2): 145–150. doi: 10.3969/j.issn.1001-893x.2017.02.004

    WANG Yanli, YANG Rumin, YU Chengbo, et al. Indoor localization of Bluetooth beacon position fingerprint based on correlation Algorithm[J]. Telecommunication Engineering, 2017, 57(2): 145–150. doi: 10.3969/j.issn.1001-893x.2017.02.004
    XU Xiaolong, TANG Yu, WANG Xinheng, et al. Variance-based fingerprint distance adjustment algorithm for indoor localization[J]. Journal of Systems Engineering and Electronics, 2015, 26(6): 1191–1201. doi: 10.1109/JSEE.2015.00130
    CHEN Kongyang, WANG Chen, YIN Zhimeng, et al. Slide: towards fast and accurate mobile fingerprinting for Wi-Fi indoor positioning systems[J]. IEEE Sensors Journal, 2018, 18(3): 1213–1223. doi: 10.1109/JSEN.2017.2778082
    JUN J, HE Liang, GU Yu, et al. Low-overhead WiFi fingerprinting[J]. IEEE Transactions on Mobile Computing, 2018, 17(3): 590–603. doi: 10.1109/TMC.2017.2737426
    AN J H and CHOI L. Inverse fingerprinting: Server side indoor localization with Bluetooth low energy[C]. Proceedings of the 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications, Valencia, Spain, 2016: 1–6. doi: 10.1109/PIMRC.2016.7794891.
    WU Xudong, SHEN Ruofei, FU Luoyi, et al. iBILL: Using iBeacon and inertial sensors for accurate indoor localization in large open areas[J]. IEEE Access, 2017, 5: 14589–14599. doi: 10.1109/ACCESS.2017.2726088
    庞业勇, 王少军, 彭宇, 等. 一种在线时间序列预测的核自适应滤波器向量处理器[J]. 电子与信息学报, 2016, 38(1): 53–62. doi: 10.11999/JEIT150157

    PANG Yeyong, WANG Shaojun, PENG Yu, et al. A kernel adaptive filter vector processor for online time series prediction[J]. Journal of Electronics &Information Technology, 2016, 38(1): 53–62. doi: 10.11999/JEIT150157
    冯少江, 徐泽宇, 石明全, 等. 基于改进扩展卡尔曼滤波的姿态解算算法研究[J]. 计算机科学, 2017, 44(9): 227–229, 249. doi: 10.11896/j.issn.1002-137X.2017.09.042

    FENG Shaojiang, XU Zeyu, SHI Mingquan, et al. Research on attitude algorithm based on improved extended caiman filter[J]. Computer Science, 2017, 44(9): 227–229, 249. doi: 10.11896/j.issn.1002-137X.2017.09.042
    谷阳, 宋千, 李杨寰, 等. 基于惯性鞋载传感器的人员自主定位粒子滤波方法[J]. 电子与信息学报, 2015, 37(2): 484–488. doi: 10.11999/JEIT140362

    GU Yang, SONG Qian, LI Yanghuan, et al. A particle filter method for pedestrian navigation using foot-mounted inertial sensors[J]. Journal of Electronics &Information Technology, 2015, 37(2): 484–488. doi: 10.11999/JEIT140362
    PEVNY T, BAS P, and FRIDRICH J. Steganalysis by subtractive pixel adjacency matrix[J]. IEEE Transactions on Information Forensics and Security, 2010, 5(2): 215–224. doi: 10.1109/TIFS.2010.2045842
    JINDALERTUDOMDEE J, HAYASHIDA M, ZHAO Yang, et al. Enumeration method for tree-like chemical compounds with benzene rings and naphthalene rings by breadth-first search order[J]. BMC Bioinformatics, 2016, 17: 113. doi: 10.1186/s12859-016-0962-4
    XIAO Ying and YIN Fuliang. Blind equalization based on RLS algorithm using adaptive forgetting factor for underwater acoustic channel[J]. China Ocean Engineering, 2014, 28(3): 401–408. doi: 10.1007/s13344-014-0032-5
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1901
  • HTML全文浏览量:  915
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-02
  • 修回日期:  2019-01-12
  • 网络出版日期:  2019-01-25
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回