高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非局部梯度的图像质量评价算法

高敏娟 党宏社 魏立力 张选德

高敏娟, 党宏社, 魏立力, 张选德. 基于非局部梯度的图像质量评价算法[J]. 电子与信息学报, 2019, 41(5): 1122-1129. doi: 10.11999/JEIT180597
引用本文: 高敏娟, 党宏社, 魏立力, 张选德. 基于非局部梯度的图像质量评价算法[J]. 电子与信息学报, 2019, 41(5): 1122-1129. doi: 10.11999/JEIT180597
Minjuan GAO, Hongshe DANG, Lili WEI, Xuande ZHANG. Image Quality Assessment Algorithm Based on Non-local Gradient[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1122-1129. doi: 10.11999/JEIT180597
Citation: Minjuan GAO, Hongshe DANG, Lili WEI, Xuande ZHANG. Image Quality Assessment Algorithm Based on Non-local Gradient[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1122-1129. doi: 10.11999/JEIT180597

基于非局部梯度的图像质量评价算法

doi: 10.11999/JEIT180597
基金项目: 国家自然科学基金(61871260, 61603234, 61362029, 61461043)
详细信息
    作者简介:

    高敏娟:女,1984年生,博士生,研究方向为图像处理、图像质量评价

    党宏社:男,1962年生,教授,博士生导师,研究方向为工业过程与优化、计算机控制、图像处理

    魏立力:男,1965年生,教授,研究方向为应用统计与数据分析

    张选德:男,1979 年生,教授,博士生导师,研究方向为图像恢复、图像质量评价、稀疏表示和低秩逼近理论

    通讯作者:

    张选德 zhangxuande@sust.edu.cn

  • 中图分类号: TP391

Image Quality Assessment Algorithm Based on Non-local Gradient

Funds: The National Natural Science Foundation of China (61871260, 61603234, 61362029, 61461043)
  • 摘要:

    图像质量评价研究的目标在于模拟人类视觉系统对图像质量的感知过程,构建与主观评价结果尽可能一致的客观评价算法。现有的很多算法都是基于局部结构相似设计的,但人对图像的主观感知是高级的、语义的过程,而语义信息本质上是非局部的,因此图像质量评价应该考虑图像的非局部信息。该文突破了经典的基于局部信息的算法框架,提出一种基于非局部信息的框架,并在此框架内构建了一种基于非局部梯度的图像质量评价算法,该算法通过度量参考图像与失真图像的非局部梯度之间的相似性来预测图像质量。在公开测试数据库TID2008, LIVE, CSIQ上的数值实验结果表明,该算法能获得较好的评价效果。

  • 图  1  基于局部和非局部信息的FRIQA模型两步框架

    图  2  参考图像中以$i$为中心、$t$为边长的方邻域

    图  3  6种算法在TID2008数据库中的散点图

    表  1  10种不同IQA算法在TID2008, CSIQ, LIVE数据库的实验结果比较

    数据库性能指标PSNRVSNRSSIMMS-SSIMIW-SSIMFSIMESSIMGMSDGSIMNGSIM
    TID2008 SROCC 0.524 0.704 0.774 0.852 0.855 0.880 0.884 0.891 0.855 0.892
    KROCC 0.369 0.534 0.576 0.654 0.663 0.694 0.704 0.708 0.665 0.713
    PLCC 0.530 0.682 0.773 0.842 0.857 0.873 0.885 0.879 0.846 0.886
    RMSE 1.137 0.981 0.851 0.729 0.689 0.652 0.624 0.640 0.715 0.622
    CSIQ SROCC 0.805 0.810 0.875 0.913 0.921 0.924 0.932 0.957 0.912 0.962
    KROCC 0.608 0.624 0.690 0.739 0.752 0.756 0.768 0.813 0.740 0.825
    PLCC 0.800 0.800 0.861 0.899 0.914 0.912 0.922 0.954 0.897 0.961
    RMSE 0.157 0.157 0.133 0.114 0.106 0.100 0.101 0.079 0.115 0.073
    LIVE SROCC 0.875 0.927 0.947 0.944 0.956 0.963 0.962 0.960 0.955 0.950
    KROCC 0.686 0.761 0.796 0.792 0.817 0.833 0.839 0.823 0.813 0.815
    PLCC 0.872 0.923 0.944 0.943 0.952 0.959 0.953 0.960 0.943 0.946
    RMSE 13.36 10.50 8.944 9.095 8.347 7.678 7.003 7.62 9.037 7.455
    下载: 导出CSV

    表  2  10种不同IQA算法在TID2008,CSIQ, LIVE数据库单一失真性能(SROCC)的比较

    数据库失真类型PSNRVSNRSSIMMS-SSIMIW-SSIMFSIMESSIMGMSDGSIMNGSIM
    TID2008 AWN 0.907 0.772 0.811 0.809 0.786 0.857 0.885 0.918 0.857 0.902
    ANMC 0.899 0.779 0.803 0.805 0.792 0.851 0.813 0.898 0.809 0.873
    SCN 0.917 0.766 0.815 0.819 0.771 0.848 0.913 0.913 0.890 0.929
    JPEG 0.872 0.917 0.925 0.934 0.918 0.928 0.943 0.952 0.939 0.956
    JP2K 0.813 0.951 0.962 0.973 0.973 0.977 0.975 0.980 0.975 0.958
    J2TE 0.831 0.790 0.858 0.852 0.820 0.854 0.879 0.883 0.892 0.926
    CSIQ AWGN 0.936 0.924 0.897 0.947 0.938 0.926 0.949 0.968 0.944 0.966
    JPEG 0.888 0.903 0.954 0.963 0.966 0.965 0.964 0.965 0.963 0.966
    JP2K 0.936 0.948 0.960 0.968 0.968 0.968 0.967 0.972 0.964 0.974
    FNIOSE 0.933 0.908 0.892 0.933 0.905 0.923 0.943 0.950 0.938 0.962
    BLUR 0.929 0.944 0.960 0.971 0.978 0.972 0.962 0.971 0.958 0.967
    CONTRST 0.862 0.870 0.792 0.952 0.953 0.942 0.939 0.904 0.950 0.946
    LIVE JPEG2 0.895 0.955 0.961 0.962 0.964 0.971 0.980 0.971 0.958 0.972
    JPEG 0.880 0.965 0.976 0.981 0.980 0.983 0.981 0.978 0.909 0.960
    AWGN 0.985 0.978 0.969 0.973 0.966 0.965 0.976 0.974 0.977 0.993
    BLUR 0.782 0.941 0.951 0.954 0.972 0.970 0.991 0.957 0.951 0.939
    FASTFA 0.890 0.902 0.955 0.947 0.944 0.949 0.947 0.942 0.939 0.956
    下载: 导出CSV
  • BAE S H and KIM M. A novel image quality assessment with globally and locally consilient visual quality perception[J]. IEEE Transactions on Image Processing, 2016, 25(5): 2392–2406. doi: 10.1109/TIP.2016.2545863
    WANG Hanli, FU Jie, LIN Weisi, et al. Image quality assessment based on local linear information and distortion-specific compensation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 915–926. doi: 10.1109/TIP.2016.2639451
    DI E C and JACOVITTI G. A detail based method for linear full reference image quality prediction[J]. IEEE Transactions on Image Processing, 2017, 27(1): 179–192. doi: 10.1109/TIP.2017.2757139
    CHANDLER D M and HEMAMI S S. VSNR: A wavelet-based visual signal-to-noise ratio for natural images[J]. IEEE Transactions on Image Processing, 2007, 16(9): 2284–2298. doi: 10.1109/TIP.2007.901820
    褚江, 陈强, 杨曦晨. 全参考图像质量评价综述[J]. 计算机应用研究, 2014, 31(1): 13–22. doi: 10.3969/j.issn.1001-3695.2014.01.003

    CHU Jiang, CHEN Qiang, and YANG Xichen. Review on full reference image quality assessment algorithms[J]. Application Research of Computers, 2014, 31(1): 13–22. doi: 10.3969/j.issn.1001-3695.2014.01.003
    WANG Zhou and BOVIK A C. Mean squared error: love it or leave it? A new look at signal fidelity measures[J]. IEEE Signal Processing Magazine, 2009, 26(1): 98–117. doi: 10.1109/MSP.2008.930649
    HUYNH-THU Q and GHANBARI M. Scope of validity of PSNR in image/video quality assessment[J]. Electronics Letters, 2008, 44(13): 800–801. doi: 10.1049/el:20080522
    WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612. doi: 10.1109/TIP.2003.819861
    WANG Zhou, SIMONCELLI E P, and BOVIK A C. Multiscale structural similarity for image quality assessment[C]. Proceedings of 37th IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2003: 1398–1402.
    LI Chaofeng and BOVIK A C. Three-component weighted structural similarity index[C]. SPIE Conference on Image Quality and System Performance, San Jose, USA, 2009, 7242: 72420Q–72420Q-9.
    WANG Zhou and LI Qiang. Information content weighting for perceptual image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(5): 1185–1198. doi: 10.1109/TIP.2010.2092435
    ZHANG Lin, ZHANG Lei, MOU Xuanqin, et al. FSIM: A feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378–2386. doi: 10.1109/TIP.2011.2109730
    LIU Anmin, LIN Weisi, and NARWARIA M. Image quality assessment based on gradient similarity[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1500–1512. doi: 10.1109/TIP.2011.2175935
    XUE Wufeng, ZHANG Lei, MOU Xuanqin, et al. Gradient magnitude similarity deviation: A highly efficient perceptual image quality index[J]. IEEE Transactions on Image Processing, 2014, 23(2): 684–695. doi: 10.1109/TIP.2013.2293423
    ZHANG Xuande, FENG Xiangchu, WANG Weiwei, et al. Edge strength similarity for image quality assessment[J]. IEEE Signal Processing Letters, 2013, 20(4): 319–322. doi: 10.1109/LSP.2013.2244081
    WANG Tonghan, JIA Huizhen, and SHU Huazhong. Full-reference image quality assessment algorithm based on gradient magnitude and histogram of oriented gradient[J]. Journal of Southeast University, 2018, 48(2): 276–281. doi: 10.3969/j.issn.1001-0505.2018.02.014
    NI Zhangkai, MA Lin, ZENG Huanqiang, et al. Gradient direction for screen content image quality assessment[J]. IEEE Signal Processing Letters, 2016, 23(10): 1394–1398. doi: 10.1109/LSP.2016.2599294
    DING Li, HUANG Hua, and ZANG Yu. Image quality assessment using directional anisotropy structure measurement[J]. IEEE Transactions on Image Processing, 2017, 26(4): 1799–1809. doi: 10.1109/TIP.2017.2665972
    张帆, 张偌雅, 李珍珍. 基于对称相位一致性的图像质量评价方法[J]. 激光与光电子学进展, 2017, 54(10): 194–202. doi: 10.3788/LOP54.101003

    ZHANG Fan, ZHANG Ruoya, and LI Zhenzhen. Image quality assessment based on symmetry phase congruency[J]. Laser &Optoelectronics Progress, 2017, 54(10): 194–202. doi: 10.3788/LOP54.101003
    PONOMARENKO N, LUKIN V, ZELENSKY A, et al. TID2008: A database for evaluation of full-reference visual quality assessment metrics[OL]. http://www.ponomarenko.info/papers/mre2009tid.pdf. 2016.10.
    LARSON EC and CHANDLER D. Categorical subjective image quality (CSIQ) database[OL]. http://vision.okstate.edu/csiq, 2016.10.
    SHEIKH H R, WANG Zhou, BOVIK A C, et al. Image and video quality assessment research at LIVE[OL]. http://live.ece.utexas.edu/rese-arch/quality/. 2016.10.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  2117
  • HTML全文浏览量:  963
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-19
  • 修回日期:  2018-12-18
  • 网络出版日期:  2018-12-26
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回