高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超密集网络中基于移动边缘计算的任务卸载和资源优化

张海波 李虎 陈善学 贺晓帆

张海波, 李虎, 陈善学, 贺晓帆. 超密集网络中基于移动边缘计算的任务卸载和资源优化[J]. 电子与信息学报, 2019, 41(5): 1194-1201. doi: 10.11999/JEIT180592
引用本文: 张海波, 李虎, 陈善学, 贺晓帆. 超密集网络中基于移动边缘计算的任务卸载和资源优化[J]. 电子与信息学报, 2019, 41(5): 1194-1201. doi: 10.11999/JEIT180592
Haibo ZHANG, Hu LI, Shanxue CHEN, Xiaofan HE. Computing Offloading and Resource Optimization in Ultra-dense Networks with Mobile Edge Computation[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1194-1201. doi: 10.11999/JEIT180592
Citation: Haibo ZHANG, Hu LI, Shanxue CHEN, Xiaofan HE. Computing Offloading and Resource Optimization in Ultra-dense Networks with Mobile Edge Computation[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1194-1201. doi: 10.11999/JEIT180592

超密集网络中基于移动边缘计算的任务卸载和资源优化

doi: 10.11999/JEIT180592
基金项目: 国家自然科学基金(61771084, 61601071),长江学者和创新团队发展计划基金(IRT16R72),重庆市基础研究与前沿探索项目(cstc2018jcyjAX0463)
详细信息
    作者简介:

    张海波:男,1979年生,副教授,研究方向为无线资源管理

    李虎:男,1992年生,硕士生,研究方向为移动边缘计算、无线资源管理

    陈善学:男,1966年生,教授,研究方向为图像处理、数据压缩

    贺晓帆:男,1985年生,助理教授,研究方向为无线资源优化

    通讯作者:

    李虎 976502889@qq.com

  • 中图分类号: TN929.5

Computing Offloading and Resource Optimization in Ultra-dense Networks with Mobile Edge Computation

Funds: The National Natural Science Foundation of China (61771084, 61601071), The Foundation for Changjiang Scholars and Innovative Research Team in University (IRT16R72), The Basic Research and Frontier Exploration Projects in Chongqing (cstc2018jcyjAX0463)
  • 摘要:

    移动边缘计算(MEC)通过在无线网络边缘为用户提供计算能力,来提高用户的体验质量。然而,MEC的计算卸载仍面临着许多问题。该文针对超密集组网(UDN)的MEC场景下的计算卸载,考虑系统总能耗,提出卸载决策和资源分配的联合优化问题。首先采用坐标下降法制定了卸载决定的优化方案。同时,在满足用户时延约束下采用基于改进的匈牙利算法和贪婪算法来进行子信道分配。然后,将能耗最小化问题转化为功率最小化问题,并将其转化为一个凸优化问题得到用户最优的发送功率。仿真结果表明,所提出的卸载方案可以在满足用户不同时延的要求下最小化系统能耗,有效地提升了系统性能。

  • 图  1  系统模型

    图  2  不同时延约束范围下卸载用户的比例

    图  3  不同时延约束范围下的系统总能耗

    图  4  系统的能耗与时延约束

    图  5  系统的能耗与输入数据大小

    图  6  系统的能耗与用户数目

    表  1  任务卸载和资源分配算法

    输入:用户数$N$,${t_n} = {\rm{(}}{w_n},{d_n}{\rm{,}}T_n^{\ {\rm{max}}}{\rm{)}}$,${f^c}$,初始卸载决定${{{A}}^0}$。
    初始化:$l \leftarrow 0$,
    Repeat
     $l \leftarrow l + 1$
     for $n = 1{\rm{ : }}N$
      根据式(13)得到${{{A}}^{l - 1}}{\rm{(}}n{\rm{)}}$;
      采用改进的匈牙利算法和贪婪算法得到子信道分配矩阵${{{C}}_{{N_c} \times K}}$;
      根据凸优化问题P3采用内点法求解得到每个子信道上最优的发
    送功率$p_n^k$;
      根据式(12)计算$Q_n^l$;
     end
     $q_l^* \leftarrow {\rm{ma}}{{\rm{x}}_{n = 1, \cdots ,N}}Q_n^l$和$n_l^* \leftarrow {\rm{arg ma}}{{\rm{x}}_{n = 1, \cdots ,N}}Q_n^l$;
     更新${{{A}}^l} \leftarrow {{{A}}^{l - 1}}\left( {n_l^*} \right)$;
    Until $q_l^* \le 0$;
    输出:卸载决定矩阵${{{A}}^{\rm{*}}}$,信道分配矩阵${{C}}_{{N_c} \times K}^{\rm{*}}$,功率分配矩阵${{{P}}^{\rm{*}}}$。
    下载: 导出CSV

    表  2  仿真参数

    参数取值
    子信道带宽$B$0.2 MHz
    子信道个数20
    用户最大发送功率${P_{\max }}$23 dBm
    空闲时电路功率消耗${P^i}$10 mW
    背景噪声功率${\omega _0}$–100 dBm
    用户的计算能力$f_n^l$0.1~1 GHz/周期
    计算任务的大小${d_n}$400~1200 kB
    需要的CPU周期${w_n}$0.2~1 GHz
    用户容忍最大时延$T_n^{\ \max }$1~4 s
    MEC的计算能力${f^c}$4 GHz/周期
    下载: 导出CSV
  • WANG Shiqiang, ZAFER M, and LEUNG K K. Online placement of multi-component applications in edge computing environments[J]. IEEE Access, 2017(5): 2514–2533. doi: 10.1109/ACCESS.2017.2665971
    MAO Yuyi, YOU Changsheng, ZHANG Jun, et al. A survey on mobile edge computing: the communication perspective[J]. IEEE Communications Surveys & Tutorials, 2017, 19(4): 2322–2358. doi: 10.1109/COMST.2017.2745201
    PAN Jianli and MCELHANNON J. Future edge cloud and edge computing for internet of things applications[J]. IEEE Internet of Things Journal, 2018, 5(1): 439–449. doi: 10.1109/JIOT.2017.2767608
    YANG Bin, MAO Guoqiang, DING Ming, et al. Dense small cell networks: from noise-limited to dense interference-limited[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4262–4277. doi: 10.1109/TVT.2018.2794452
    GE Xiaohu, TU Song, MAO Guoqiang, et al. 5G ultra-dense cellular networks[J]. IEEE Wireless Communications, 2016, 23(1): 72–79. doi: 10.1109/MWC.2016.7422408
    YANG Lichao, ZHANG Heli, LI Ming, et al. Mobile edge computing empowered energy efficient task offloading in 5G[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 6398–6409. doi: 10.1109/TVT.2018.2799620
    ZHANG Jiao, HU Xiping, NING Zhaolong, et al. Energy-latency tradeoff for energy-aware offloading in mobile edge computing networks[J]. IEEE Internet of Things Journal, 2018, 5(4): 2633–2645. doi: 10.1109/JIOT.2017.2786343
    LIU Jianhui and ZHANG Qi. Offloading schemes in mobile edge computing for ultra-reliable low latency communications[J]. IEEE Access, 2018, 6: 12825–12837. doi: 10.1109/ACCESS.2018.2800032
    MAO Yuyi, ZHANG Jun, SONG S H, et al. Stochastic joint radio and computational resource management for multi-user mobile-edge computing systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(9): 5994–6009. doi: 10.1109/TWC.2017.2717986
    TI N T and LE Longbao. Computation offloading leveraging computing resources from edge cloud and mobile peers[C]. Proceedings of 2017 IEEE International Conference on Communications, Paris, France, 2017: 1–6.
    ZHAO Pengtao, TIAN Hui, QIN Cheng, et al. Energy-saving offloading by jointly allocating radio and computational resources for mobile edge computing[J]. IEEE Access, 2017(5): 11255–11268. doi: 10.1109/ACCESS.2017.2710056
    ZHANG Jing, XIA Weiwei, YAN Feng, et al. Joint computation offloading and resource allocation optimization in heterogeneous networks with mobile edge computing[J]. IEEE Access, 2018, 6: 19324–19337. doi: 10.1109/ACCESS.2018.2819690
    GUO Jun, ZHANG Heli, YANG Lichao, et al. Decentralized computation offloading in mobile edge computing empowered small-cell networks[C]. Proceedings of 2017 IEEE Globecom Workshops, Singapore, Singapore, 2017: 1–6.
    RANADHEERA S, MAGHSUDI S, and HOSSAIN E. Computation offloading and activation of mobile edge computing servers: a minority game[J]. IEEE Wireless Communications Letters, 2018, 7(5): 688–691. doi: 10.1109/LWC.2018.2810292
    WANG Chenmeng, YU F R, LIANG Chengchao, et al. Joint computation offloading and interference management in wireless cellular networks with mobile edge computing[J]. IEEE Transactions on Vehicular Technology, 2017, 66(8): 7432–7445. doi: 10.1109/TVT.2017.2672701
    DINH T Q, TANG Jianhua, LA Q D, et al. Offloading in mobile edge computing: task allocation and computational frequency scaling[J]. IEEE Transactions on Communications, 2017, 65(8): 3571–3584. doi: 10.1109/TCOMM.2017.2699660
    RAM S S, VEERAVALLI V V, and NEDIC A. Distributed non-autonomous power control through distributed convex optimization[C]. Proceedings of IEEE INFOCOM 2009, Rio de Janeiro, Brazil, 2009: 3001–3005.
    LIU Peng, LI Jiandong, LI Hongyan, et al. Convex optimisation-based joint channel and power allocation scheme for orthogonal frequency division multiple access networks[J]. IET Communications, 2015, 9(1): 28–32. doi: 10.1049/iet-com.2014.0409
    3GPP organizational parthners. Evolved universal terrestrial radio access (E-UTRA); Further advancements for E-UTRA physical layer aspects (Release 9), document TS 36.814, 3GPP[OL]. http://www.3gpp.org/ftp/,2012.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  3139
  • HTML全文浏览量:  1030
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-13
  • 修回日期:  2019-01-21
  • 网络出版日期:  2019-02-14
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回