高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进小波变换的MEMS陀螺信号去噪算法

陈光武 刘孝博 王迪 刘射德

陈光武, 刘孝博, 王迪, 刘射德. 基于改进小波变换的MEMS陀螺信号去噪算法[J]. 电子与信息学报, 2019, 41(5): 1025-1031. doi: 10.11999/JEIT180590
引用本文: 陈光武, 刘孝博, 王迪, 刘射德. 基于改进小波变换的MEMS陀螺信号去噪算法[J]. 电子与信息学报, 2019, 41(5): 1025-1031. doi: 10.11999/JEIT180590
Guangwu CHEN, Xiaobo LIU, Di WANG, Shede LIU. Denoising of MEMS Gyroscope Based on Improved Wavelet Transform[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1025-1031. doi: 10.11999/JEIT180590
Citation: Guangwu CHEN, Xiaobo LIU, Di WANG, Shede LIU. Denoising of MEMS Gyroscope Based on Improved Wavelet Transform[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1025-1031. doi: 10.11999/JEIT180590

基于改进小波变换的MEMS陀螺信号去噪算法

doi: 10.11999/JEIT180590
基金项目: 国家自然科学基金(61863024, 71761023)、甘肃省基础研究创新群体计划(1606RJIA327)、甘肃省自然基金(18JR3RA107, 1610RJYA034)、甘肃省高等学校科研项目资助(2018C-11)、甘肃省科技计划资助(18CX3ZA004)
详细信息
    作者简介:

    陈光武:男,1976年生,教授,研究方向为惯导和组合导航

    刘孝博:男,1994年生,硕士,研究方向为惯性导航、传感器数据处理

    王迪:男,1991年生,硕士,研究方向为组合导航

    刘射德:男,1994年生,硕士,研究方向为视觉导航

    通讯作者:

    陈光武 cgwyjh1976@126.com

  • 中图分类号: U666.1; TN911.7

Denoising of MEMS Gyroscope Based on Improved Wavelet Transform

Funds: The National Natural Science Foundation of China (61863024, 71761023), The Gansu Basic Research Innovation Group Program (1606RJIA327), The Gansu Natural Science Foundation (18JR3RA107 1610RJYA034), Granted by Gansu Provincial Higher Education Research Project (2018C-11), The Gansu Province Science and Technology Plan Funding (18CX3ZA004)
  • 摘要:

    为提高MEMS陀螺仪测量精度,抑制测量噪声对其造成的影响,该文分析了某型号MEMS陀螺仪误差特性,提出基于递归最小二乘法(RLS)多重小波分解重构的强追踪自反馈模型,建立新的软阈值函数。由于模型处理后的数据带有部分奇异值,该文提出了一种改进的中值滤波算法。对于陀螺仪零偏噪声问题,提出零偏不稳定性抑制算法,并对该算法模型进行了详细的描述。将某项目研究中列车姿态测量系统的实验数据应用到该算法模型中。测试实验分为静态、动态两组,其结果均表明:该算法减小了信号中的噪声,有效地抑制了MEMS陀螺仪随机漂移,提高了姿态解算的精度。肯定了该算法对陀螺仪输出信号噪声去除,以及使用精度提升的可行性和有效性。

  • 图  1  模型的系统框图

    图  2  改进前后的阿伦曲线图

    图  3  x 轴原始数据滤波处理及相应的阿伦方差曲线图

    图  4  y 轴原始数据滤波处理及相应的阿伦方差曲线图

    图  5  z 轴原始数据滤波处理及相应的阿伦方差曲线图

    图  6  经传统小波变换和改进小波变换处理的姿态角

    图  7  动态下各轴角速率的处理结果

    图  8  动态下姿态角结算结果

    表  1  传感器性能参数

    陀螺仪加速度计磁力计
    测量范围±150, ±500, ±1000, ±2000 (°/s)±2, ±4, ±8, ±16 (g)±0.6 (mT)
    噪声密度0.01° (/s·$\sqrt {{\rm{Hz}}} $)110 (μg/$\sqrt {{\rm{Hzrms}}} $)48 (nv/$\sqrt {{\rm{Hz}}} $)
    敏感度12.5 mv (/°·s)1000 (mv/g)0.1 mv (v·μT)
    温漂2%–0.3%/℃±0.3%
    采样频率0.1~200 Hz0.1~20 Hz0.1~20 Hz
    ARW (°/h0.5)1.57
    RRW (°/h1.5)600
    BI (°/h)224.2
    下载: 导出CSV

    表  2  两种小波变换对陀螺仪数据处理结果

    算法坐标轴运行时间(s)RMS误差估计RRW (°/h1.5)ARW (°/h0.5)BI (°/h)RR (°/h)
    传统的小波变换x26.75497610.1147195.26740.03011.84015.3524
    y28.7449759.2655260.42190.02831.73494.5069
    z27.6459639.2012220.38940.01171.441012.7358
    改进的小波变换x26.853960.129068.6507003.0727
    y28.645760.124932.9762002.3039
    z27.698720.12478.6092008.7398
    下载: 导出CSV

    表  3  姿态解算的MSE误差估计

    坐标轴MSE误差
    算法改进前算法改进后
    z4.3257×10–41.1512×10–7
    x8.7754×10–48.5849×10–7
    y1.5196×10–48.4663×10–5
    下载: 导出CSV

    表  4  两种算法角速率误差比较数据

    算法坐标轴MSE (°/s)运行时间(s)MAE (°/s)ARE (%)
    传统的小波变换x0.04217.6145950.055411.10
    y0.06238.1306190.079613.41
    z0.09768.6473420.084215.76
    改进的小波变换x0.09998.4673720.02368.86
    y0.00437.0472500.035410.87
    z0.00258.0213350.041612.52
    下载: 导出CSV

    表  5  两种算法的姿态角误差参数

    算法姿态角MSE (°/s)MAE (°/s)
    文献[20]算法俯仰角0.49120.4524
    航向角0.00280.1873
    横滚角0.00200.1171
    本文算法俯仰角0.29280.2360
    航向角0.00210.1354
    横滚角0.00140.0816
    下载: 导出CSV
  • ZHANG Yanshun, PENG Chuang, MOU Dong, et al. An adaptive filtering approach based on the dynamic variance model for reducing MEMS gyroscope random error[J]. Sensors, 2018, 18(1): 3943–3957. doi: 10.3390/s18113943
    XING Haifeng, CHEN Zhiyong, YANG Haotian, et al. Self-alignment MEMS IMU method based on the rotation modulation technique on a swing base[J]. Sensors, 2018, 18(4): 1178–1200. doi: 10.3390/s18041178
    WANG Wei and CHEN Xiyuan. Application of improved 5th-cubature kalman filter in initial strapdown inertial navigation system alignment for large. misalignment angles[J]. Sensors, 2018, 18(2): 659–676. doi: 10.3390/s18020659
    LI Tao, YUAN Gannan, LI wang, et al. Particle filter with novel nonlinear error model for miniature gyroscope based measurement while drilling navigation[J]. Sensors, 2016, 16(3): 371–385. doi: 10.3390/s16030371
    GUO Zhanshe, FU Peng, LIU feng, et al. Design and FEM simulation for a novel resonant silicon MEMS gyroscope with temperature compensation function[J]. Microsyste Technologies, 2018, 24(3): 1453–1459. doi: 10.1007/s00542-017-3524-4
    JON O, AIFONSO B, IBAN L, et al. Evaluation of experimental GNSS and 10-DOF MEMS IMU measurements for train positioning[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 6(5): 1–11. doi: 10.1109/TIM.2018.2838799
    XIAO Dingbang, XIA Dewei, LI Qingsong, et al. A temperature self-calibrating torsional accelerometer with fully differential configurationand integrated reference capacitor[J]. IEEE Sensors, 2015, 6(7): 1–4. doi: 10.1109/ICSENS.2015.7370428
    IGOR P, BROCK B, CAREY M, et al. Towards self-navigating cars using MEMS IMU: Challengesand opportunities[C]. International Symposium on Inertial Sensors and Systems, Moltrasio, Italy, 2018: 1–4.
    金靖, 王峥, 张忠钢, 等. 基于多元线性回归模型的光纤陀螺温度误差建模[J]. 宇航学报, 2008, 29(6): 1921–1916. doi: 10.387/s100-1328

    JIN Jing, WANG Zheng, ZHANG Zhonggang, et al. Temperature errors modeling for fiber optic gyroscope using multiple linear regression models[J]. Journal of Aerospace, 2008, 29(6): 1921–1916. doi: 10.387/s100-1328
    DING Jicheng, ZHANG Qian, HUANG Weiquan, et al. Laser gyroscope temperature compensat-i on using modified RBFNN[J]. Sensors, 2014, 14(10): 18711–18727. doi: 10.3390/s141018711
    YUAN Guangmin, YUAN Weizheng, LIANG Xue, et al. Dynamic performance comparison of two kalman filters for rate signal direct modeling and differencing modeling for combining a MEMS gyroscope array to improve accuracy[J]. Sensors, 2015, 15(11): 27590–27610. doi: 10.3390/s151127590
    ZHA Feng, XU Jiangning, LI JingshuHe, et al. IUKF neural network modeling for FOG temperature drift[J]. Beijing Institute of Aerospace Information, 2013, 24(5): 838–844. doi: 10.1109/JSEE.2013.00097
    ZHI S, JACQUES G, MICHAEL J, et al. Low cost two dimension navigation using an augmented Kalman filter/Fast Orthogonal Search module for the integration of reduced inertial sensor system and global positioning[J]. Elsevier, 2011, 19(6): 1111–1132. doi: 10.1016/j.trc.2011.01.001
    REN Honglian and PETER K. Investiga-tion of attitude tracking using an integrated inertial and magnetic navigation system for hand-held surgical instruments[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(2): 210–217. doi: 10.1109/TMECH.2010.2095504
    CHEN Xiyuan, XU Yuan, LI Qinghua, et al. Application of adaptive extended kalman smoothing on INS/WSN integration system for mobile robot indoors[J]. Mathematical Problems in Engineering, 2013, 10(10): 1–8. doi: 10.1155/2013/130508
    CHU Hairong, SUN Tingting, ZHANG Baiqiang, et al. Rapid transfer alignment of MEMS SINS based on adaptive incremental kalman filter[J]. Sensors, 2017, 17(1): 152–166. doi: 10.3390/s17010152
    FENG Yibo, LI Xisheng, and ZHANG Xiaojuan. An adaptive compensation algorithm for temperature drift of micro-electro-mechanical systems gyroscopes using a strong tracking kalman filter[J]. Sensors, 2015, 15(5): 11222–11238. doi: 10.3390/s150511222
    BIRSEL A and BILLUR B. Leg motion classification with artificial neural networks using wavelet-based features of gyroscope signals[J]. Sensors, 2011, 11(2): 1721–1743. doi: 10.3390/s110201721
    李杰, 曲芸, 刘俊, 等. 模平方小波阈值在MEMS陀螺仪在信号降噪总的应用[J]. 中国惯性术学报, 2008, 16(4): 236–239. doi: 10.13695/j.cnki.12-1222/o3.2008.02.03

    LI Jie, QU Yun, LIU Jun, et al. Application of modular square wavelet threshold for denoising MEMS-based gyros signal[J]. Journal of Chinese Inertial Technology, 2008, 16(4): 236–239. doi: 10.13695/j.cnki.12-1222/o3.2008.02.03
    刘菲, 任章, 李青东. 基于小波方差的MEMS IMU随机误差模型间接估计方法[J]. 中国惯性技术学报, 2016, 24(1): 77–82. doi: 10.13695/j.cnki.12-1222/o3.2016.01.014

    LIU Fei, REN Zhang, and LI Qingdong. Indirect estimation method for random error models of MEMS IMU based on wavelet variance[J]. Journal of Chinese Inertial Technology, 2016, 24(1): 77–82. doi: 10.13695/j.cnki.12-1222/o3.2016.01.014
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  2830
  • HTML全文浏览量:  845
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-13
  • 修回日期:  2018-12-25
  • 网络出版日期:  2019-01-04
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回