高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度置信网络的随机脉冲噪声快速检测算法

徐少平 张贵珍 李崇禧 刘婷云 唐祎玲

徐少平, 张贵珍, 李崇禧, 刘婷云, 唐祎玲. 基于深度置信网络的随机脉冲噪声快速检测算法[J]. 电子与信息学报, 2019, 41(5): 1130-1136. doi: 10.11999/JEIT180558
引用本文: 徐少平, 张贵珍, 李崇禧, 刘婷云, 唐祎玲. 基于深度置信网络的随机脉冲噪声快速检测算法[J]. 电子与信息学报, 2019, 41(5): 1130-1136. doi: 10.11999/JEIT180558
Shaoping XU, Guizhen ZHANG, Chongxi LI, Tingyun LIU, Yiling TANG. A Fast Random-valued Impulse Noise Detection Algorithm Based on Deep Belief Network[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1130-1136. doi: 10.11999/JEIT180558
Citation: Shaoping XU, Guizhen ZHANG, Chongxi LI, Tingyun LIU, Yiling TANG. A Fast Random-valued Impulse Noise Detection Algorithm Based on Deep Belief Network[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1130-1136. doi: 10.11999/JEIT180558

基于深度置信网络的随机脉冲噪声快速检测算法

doi: 10.11999/JEIT180558
基金项目: 国家自然科学基金(61662044, 61163023, 51765042, 81501560),江西省自然科学基金(20171BAB202017),江西省研究生创新项目(YC2018-S066)
详细信息
    作者简介:

    徐少平:男,1976年生,博士,教授,博士生导师,研究方向为图形图像处理技术、机器视觉、虚拟手术仿真等

    张贵珍:女,1993年生,硕士生,研究方向为图像处理与机器学习

    李崇禧:男,1994年生,硕士生,研究方向为图像处理与机器学习

    刘婷云:女,1996年生,硕士生,研究方向为图像处理与机器学习

    唐祎玲:女,1977年生,博士生,研究方向为图像处理与机器学习

    通讯作者:

    唐祎玲 tangyiling@ncu.edu.cn

  • 中图分类号: TP391

A Fast Random-valued Impulse Noise Detection Algorithm Based on Deep Belief Network

Funds: The National Natural Science Foundation of China (61662044, 61163023, 51765042, 81501560), The Project of Jiangxi Province Natural Science Foundation (20171BAB202017), The Jiangxi Provincial Graduate Innovation Special Fund (YC2018-S066)
  • 摘要:

    为提高现有随机脉冲噪声(RVIN)检测算法的检测准确率和执行效率,该文试图从构建描述能力更强的特征矢量和训练非线性映射更为准确的预测模型两个方面入手,实现一种基于训练策略的快速RVIN检测算法。一方面,提取多个不同阶的对数绝对差值排序统计值并结合一个能够反映图像边缘特性的统计值作为刻画图块中心像素点是否为噪声的特征矢量。在计算量增加极少的情况下,显著提升了特征矢量的描述能力。另一方面,基于深度置信网络(DBN)训练RVIN预测模型(RVIN检测器)将特征矢量映射为噪声类型标签,实现了比浅层预测模型更为准确的映射。大量实验数据表明:与现有的RVIN检测算法相比,所提算法在检测准确率和执行效率两个方面都更有优势。

  • 图  1  噪声图像中不同位置处2个图块中心像素点ROLD统计值比较

    图  2  引入EF特征对噪声检测效果的影响比较

    表  1  图1中a1和b1图块上所提取的前m阶ROLD值比较

    图块阶数m
    123456789101112
    a11.633.294.996.688.3710.0911.8013.5215.2416.9818.7220.46
    b11.002.203.665.126.848.6210.5012.4414.4016.4018.4220.45
    下载: 导出CSV

    表  2  各噪声检测算法在常用图像集合上的各项性能指标的平均值比较

    方法含噪20%含噪40%含噪60%
    漏检数误检数错检总数MEMH漏检数误检数错检总数MEMH漏检数误检数错检总数MEMH
    ASWM3462106871414914.237478100051748316.401472098042452423.17
    PSMF1069535851427915.142303836032664130.273909656344473045.81
    ROLD-EPR656751061167318.77946289561841915.9510417116162203414.04
    ROR-NLM506893541442114.911190688732077917.1322553128563540823.60
    MLP-EPR850520811058622.781324457591900318.0915017101132513016.18
    本文方法40845909999211.77797585861656112.1710076125942267011.53
    下载: 导出CSV

    表  3  各检测算法统一用相同修复算法降噪后在PSNR指标上的比较(dB)

    方法含噪20%含噪40%含噪50%含噪60%
    LenaHouseBridgeLenaHouseBridgeLenaHouseBridgeLenaHouseBridge
    ASWM39.0633.3125.7634.2731.2124.3330.6628.8123.2526.0426.1321.61
    PSMF30.2427.8223.2529.2626.0322.7726.0324.0921.9122.0421.9820.00
    ROLD-EPR34.7733.3126.7531.7731.2124.2530.5428.8123.1228.7826.1322.20
    ROR-NLM36.9428.9225.2831.5828.9123.5927.6127.3922.3522.9224.6820.39
    MLP--EPR36.4539.3627.7133.8337.4924.4031.8636.4823.3329.4233.9622.25
    本文方法40.3542.9526.9735.8940.3124.9133.0438.2723.3629.6636.1222.18
    下载: 导出CSV

    表  4  各噪声检测算法平均执行时间的比较(s)

    方法ASWMPSMFROLD-EPRROR-NLMMLP-EPR本文方法
    时间102.720.8610.4077.190.790.70
    下载: 导出CSV
  • LIU Licheng, Chen C L P, and ZHOU Yicong. A new weighted mean filter with a two-phase detector for removing impulse noise[J]. Information Sciences, 2015, 315(September): 4052–4057. doi: 10.1016/j.ins.2015.03.067
    SINGH N, THILAGAVATHY T, LAKSHMIPRIYA R T, et al. Some studies on detection and filtering algorithms for the removal of random valued impulse noise[J]. IET Image Processing, 2017, 11(11): 953–963. doi: 10.1049/iet-ipr.2017.0346
    DONG Yiqiu and XU Shufang. A new directional weighted median filter for removal of random-valued impulse noise[J]. IEEE Signal Processing Letters, 2007, 14(3): 193–196. doi: 10.1109/LSP.2006.884014
    刘万军, 梁雪剑, 曲海成. 自适应增强卷积神经网络图像识别[J]. 中国图象图形学报, 2017, 22(12): 1723–1736. doi: 10.11834/jig.170079

    LIU Wanjun, LIANG Xuejian, and QU Haicheng. Adaptively enhanced convolutional neural network algorithm for image recognition[J]. Journal of Image and Graphics, 2017, 22(12): 1723–1736. doi: 10.11834/jig.170079
    于海平, 何发智, 潘一腾, 等. 一种基于多特征的距离正则化水平集快速分割方法[J]. 电子学报, 2017, 45(3): 534–539. doi: 10.3969/j.issn.0372-2112.2017.003.004

    YU Haiping, HE Fazhi, PAN Yiteng, et al. A fast distance regularized level set method for segmentation based on multi-features[J]. Acta Electronica Sinica, 2017, 45(3): 534–539. doi: 10.3969/j.issn.0372-2112.2017.003.004
    王森, 王余, 王易川, 等. 水下高速目标声谱图特征提取及分类设计[J]. 电子与信息学报, 2017, 39(11): 2684–2689. doi: 10.11999/JEIT170283

    WANG Sen, WANG Yu, WANG Yichuan, et al. Feature extraction and classification of spectrum of radiated noise of underwater high speed vehicle[J]. Journal of Electronics &Information Technology, 2017, 39(11): 2684–2689. doi: 10.11999/JEIT170283
    周箩鱼, 汤佳欣. 基于图像稀疏表达的模拟退火图像复原[J]. 光电子·激光, 2018, 29(2): 218–223. doi: 10.16136/j.joel.2018.02.0088

    ZHOU Luoyu and TANG Jiaxin. Image restoration based on simulated annealing with image sparse representation[J]. Journal of Optoelectronics · Laser, 2018, 29(2): 218–223. doi: 10.16136/j.joel.2018.02.0088
    AKKOUL S, LEDEE R, LECONGE R, et al. A new adaptive switching median filter[J]. IEEE Signal Processing Letters, 2010, 17(6): 587–590. doi: 10.1109/LSP.2010.2048646
    YU Hancheng, ZHAO Li, and WANG Haixian. An efficient procedure for removing random-valued impulse noise in images[J]. IEEE Signal Processing Letters, 2008, 15(12): 922–925. doi: 10.1109/LSP.2008.2005051
    GARNETT R, HUEGERICH T, CHUI C, et al. A universal noise removal algorithm with an impulse detector[J]. IEEE Transactions on Image Processing, 2005, 14(11): 1747–1754. doi: 10.1109/TIP.2005.857261
    DONG Yiqiu, RAYMOND H C, and XU Shufang. A detection statistic for random-valued impulse noise[J]. IEEE Transactions on Image Processing, 2007, 16(4): 1112–1120. doi: 10.1109/TIP.2006.891348
    XIONG Bo and YIN Zhouping. A universal denoising framework with a new impulse detector and nonlocal means[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1663–1675. doi: 10.1109/TIP.2011.2172804
    ROY A, SINGHA J, DEVI S S, et al. Impulse noise removal using SVM classification based fuzzy filter from gray scale images[J]. Signal Processing, 2016, 128(11): 262–273. doi: 10.1016/j.sigpro.2016.04.007
    TURKMEN I. The ANN based detector to remove random-valued impulse noise in images[J]. Journal of Visual Communication and Image Representation, 2015, 34(10): 28–36. doi: 10.1016/j.jvcir.2015.10.011
    SOLEIMANY S and HAMGHALAM M. A novel random-valued impulse noise detector based on MLP neural network classifier[C]. Artificial Intelligence and Robotics (IRANOPEN), Qazvin, Iran, 2017: 165–169.
    HINTON G, DENG Li, YU Dong, et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82–97. doi: 10.1109/MSP.2012.2205597
    WANG Zhou and ZHANG D. Progressive switching median filter for the removal of impulse noise highly corrupted images[J]. IEEE Transactions on Circuits System II: Analog Digital Signal Processing, 1999, 46(1): 78–80. doi: 10.1109/82.749102
    CHAN S H, WANG Xiran, and ELGENDY O A. Plug-and-play ADMM for image restoration: Fixed-point convergence and applications[J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 84–98. doi: 10.1109/TCI.2016.2629286
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  2908
  • HTML全文浏览量:  904
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-06
  • 修回日期:  2018-12-07
  • 网络出版日期:  2018-12-13
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回