高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多变量时间序列中基于克罗内克压缩感知的缺失数据预测算法

郭艳 宋晓祥 李宁 钱鹏

郭艳, 宋晓祥, 李宁, 钱鹏. 多变量时间序列中基于克罗内克压缩感知的缺失数据预测算法[J]. 电子与信息学报, 2019, 41(4): 858-864. doi: 10.11999/JEIT180541
引用本文: 郭艳, 宋晓祥, 李宁, 钱鹏. 多变量时间序列中基于克罗内克压缩感知的缺失数据预测算法[J]. 电子与信息学报, 2019, 41(4): 858-864. doi: 10.11999/JEIT180541
Yan GUO, Xiaoxiang SONG, Ning LI, Peng QIAN. Missing Data Prediction Based on Kronecker Compressing Sensing in Multivariable Time Series[J]. Journal of Electronics & Information Technology, 2019, 41(4): 858-864. doi: 10.11999/JEIT180541
Citation: Yan GUO, Xiaoxiang SONG, Ning LI, Peng QIAN. Missing Data Prediction Based on Kronecker Compressing Sensing in Multivariable Time Series[J]. Journal of Electronics & Information Technology, 2019, 41(4): 858-864. doi: 10.11999/JEIT180541

多变量时间序列中基于克罗内克压缩感知的缺失数据预测算法

doi: 10.11999/JEIT180541
基金项目: 国家自然科学基金(61571463, 61371124, 61472445);江苏省自然科学基金(BK20171401)
详细信息
    作者简介:

    郭艳:女,1971年生,教授,研究方向为大数据、信号处理、压缩感知

    宋晓祥:男,1993年生,硕士生,研究方向为大数据、压缩感知

    李宁:男,1967年生,副教授,研究方向为信号处理、认知无线电

    钱鹏:男,1991年生,博士生,研究方向为压缩感知、无源目标定位

    通讯作者:

    宋晓祥 guoyan_1029@sina.com

  • 中图分类号: TN911.7

Missing Data Prediction Based on Kronecker Compressing Sensing in Multivariable Time Series

Funds: The National Natural Science Foundation of China (61571463, 61371124, 61472445), The Jiangsu Province Natural Science Foundation (BK20171401)
  • 摘要:

    针对现有算法在预测多变量时间序列中的缺失数据时不适用或只适用于缺失数据较少的情况,该文提出一种基于克罗内克压缩感知的缺失数据预测算法。首先,利用多变量时间序列的时域平滑特性和序列之间的潜在相关性从时空两个方面设计了稀疏表示基,从而将缺失数据预测问题建模成稀疏向量恢复问题。模型求解部分,根据缺失数据的位置特点设计了适合当前应用场景且与稀疏表示基相关性低的观测矩阵。接着,从稀疏表示向量是否足够稀疏和感知矩阵是否满足有限等距特性两个方面验证了模型的性能。最后,仿真结果表明,所提算法在数据缺失严重的情况下具有良好的性能。

  • 图  1  MOTES中数据缺失类型的影响

    图  2  GSA中数据缺失类型的影响

    图  3  SST中数据缺失类型的影响

    图  4  数据集特性对算法性能的影响

    表  1  多变量时间序列

    数据源t1t2t3t4$\cdots$tK
    s10.2??0.31.9
    s2?0.40.5??
    s3?0.7?0.6?
    s40.8???2.1
    $ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $
    sN?0.11.21.3?
    下载: 导出CSV

    表  2  稀疏表示基稀疏性能比较

    n100200300500
    MOTES_10.98970.99520.99730.9992
    MOTES_20.74280.87310.93010.9786
    GSA_10.96870.99950.99980.9999
    GSA_20.52270.68410.90180.9721
    SST_10.87590.94290.97220.9935
    SST_20.73900.87850.93930.9849
    下载: 导出CSV

    表  3  稀疏表示基和观测矩阵非相关性的大小

    NK20003000400060008000
    $I({ {{ψ}}_R},{ {φ}_{{\rm{KCS}}1}})$19982995399759967993
    $I({ {{ψ}}_R},{ {φ}_{{\rm{KCS}}2}})$19982999400059998000
    $I({ {{ψ}}_E},{ {φ}_{{\rm{KCS}}1}})$19992996399759997995
    $I({ {{ψ}}_E},{ {φ}_{{\rm{KCS}}2}})$19992999399960008000
    $I({ {{ψ}}_C},{ {φ}_{{\rm{KCS}}1}})$19972996399759957995
    $I({ {{ψ}}_C},{ {φ}_{{\rm{KCS}}2}})$19982999399859997998
    下载: 导出CSV

    表  4  各方法在不同数据缺失率下的性能比较

    数据缺失率(%)
    20 5080 90 95
    MOTESKCS-GAMP-SBL0.02660.03560.08400.11010.1509
    TDMF0.02870.08710.19620.26040.3684
    SI0.08620.16041.01721.76623.5204
    RNN0.03920.09510.88750.91741.0529
    KPPCA0.02780.06080.18260.27690.4516
    GSAKCS-GAMP-SBL0.03570.04600.19850.27690.3304
    TDMF0.05480.12780.35570.47640.5688
    SI0.09350.14550.83482.94424.6315
    RNN0.05260.09451.08581.16391.7984
    KPPCA0.04980.10120.38920.48790.5872
    SSTKCS-GAMP-SBL0.01810.03270.09560.12250.1767
    TDMF0.02420.05440.17880.23740.2961
    SI0.04850.08510.74511.38022.0596
    RNN0.02620.04880.34170.58961.0421
    KPPCA0.02260.06440.17360.27050.2909
    下载: 导出CSV

    表  5  不同算法平均运行时间(ART)的比较(s)

    SIRNNKPPCATDMFKCS-GAMP-SBL
    MOTES0.73503.183211.57818.43623.0802
    GSA1.53617.032024.868520.409315.8633
    SST0.72162.521610.86838.93812.9032
    下载: 导出CSV

    表  6  稀疏表示基的选择对算法均方根误差(RMSE)的影响

    数据缺失率(%)
    2050809095
    MOTES_10.02660.03560.09300.12010.1509
    MOTES_20.03120.04220.11510.13870.1954
    GSA_10.03570.04600.19850.27690.3304
    GSA_20.04120.06810.23130.33430.4068
    SST_10.01810.03270.09960.12750.1767
    SST_20.01990.03400.12650.15340.2463
    下载: 导出CSV
  • SOWMYA R and SUNEETHA K R. Data mining with big data[C]. International Conference on Intelligent Systems and Control, Coimbatore, India, 2017: 246–250. doi: 10.1109/ISCO.2017.7855990.
    JAQUES N, TAYLOR S, SANO A, et al. Multimodal autoencoder: A deep learning approach to filling in missing sensor data and enabling better mood prediction[C]. International Conference on Affective Computing & Intelligent Interaction, San Antonio, USA, 2017: 202–208. doi: 10.1109/ACII.2017.8273601.
    BALOUJI E, SALOR Q, and ERMIS M. Exponential smoothing of multiple reference frame components with GPUs for real-time detection of time-varying harmonics and interharmonics of EAF currents[C]. IEEE Industry Applications Society Meeting, Cincinatti, USA, 2017: 1–8. doi: 10.1109/IAS.2017.8101815.
    KOZERA R and WILKOLAZKA M. Natural spline interpolation and exponential parameterization for length estimation of curves[C]. International Conference of Numerical Analysis & Applied Mathematics, Rhodes, Greece, 2017: 1–140.
    LAO Wenchao, WANG Ying, CHEN Peng, et al. Time series forecasting via weighted combination of trend and seasonality respectively with linearly declining increments and multiple sine functions[C]. International Joint Conference on Neural Networks, Beijing, China, 2014: 832–837. doi: 10.1109/IJCNN.2014.6889609.
    LIPPI M, BERTINI M, and FRASCONI P. Short-term traffic flow forecasting: An experimental comparison of time-series analysis and supervised learning[J]. IEEE Transactions on Intelligent, Transportation, System, 2013, 14(2): 871–882 doi: 10.1109/TITS.2013.2247040
    STRAUMAN A S, BIANCHI F M, and MIKALSEN K Ø. Classification of postoperative surgical site infections from blood measurements with missing data using recurrent neural networks[C]. International Conference on Biomedical & Health Informatics, Las Vegas, USA, 2018: 307–310. doi: 10.1109/BHI.2018.8333430.
    LI Li, LI Yuebiao, and LI Zhiheng. Efficient missing data imputing for traffic flow by considering temporal and spatial dependence[J]. Transportation Research Part C, 2013, 34(9): 108–120.
    LI Yuebiao, LI Zhiheng, LI Li, et al. Comparison on PPCA, KPPCA and MPPCA based missing data imputing for traffic flow[C]. Proceedings of IEEE Conference on Intelligent Transportation System, Wuhan, China, 2013: 1535–1540.
    SHI Weiwei, ZHU Yongxin, and HUANG Tian. Effective prediction of missing data on apache spark over multivariable time series[J]. IEEE Transactions on Big Data, 2018 doi: 10.1109/TBDATA.2017.2719703
    HADI A and WAHIDAH I. Delay estimation using compressive sensing on WSN IEEE 802.15.4[C]. International Conference on Control, Electronics, Renewable Energy and Communications, Bandung, Indonesia, 2017: 192–197. doi: 10.1109/ICCEREC.2016.7814975.
    DUARTEAND M F and BARANIUK R G. Kronecker compressive sensing[J]. IEEE Transactions on Image Processing, 2012, 21(2): 494–504 doi: 10.1109/TIP.2011.2165289
    ZHOU Haifei, TAN Liangsheng, GE Fei, et al. Traffic matrix estimation: Advanced-Tomogravity method based on a precise gravity model[J]. International Journal of Communication Systems, 2015, 28(10): 1709–1728 doi: 10.1002/dac.2787
    CHEN S S, DONOHO D L, and SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1): 129–159 doi: 10.1137/S003614450037906X
    TROPP J A and GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666 doi: 10.1109/TIT.2007.909108
    CHARTRAND R and YIN W. Iteratively reweighted algorithms for compressive sensing[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 2008: 3869–3872. doi: 10.1109/ICASSP.2008.4518498.
    AL-SHOUKAIRI M, SCHNITER P, and RAO B D. A GAMP based low complexity sparse Bayesian learning algorithm[J]. IEEE Transactions on Signal Processing, 2018, 66(2): 294–308 doi: 10.1109/TSP.2017.2764855
    SAMUEL M. Intel lab data[OL]. http://db.csail.mit.edu, 2016.
    FONOLLOSA J, SHEIK S, HUERTA R, et al. Reservoir computing compensates slow response of chemo sensor arrays exposed to fast varying gas concentrations in continuous monitoring[J]. Sensors & Actuators B Chemical, 2015, 215: 618–629.
    Tropical Atmosphere Ocean. NOAA/Pacific Marine Environmental Laboratory[OL]. http://www.pmel.noaa.gov/tao/proj_over/proj_over.html, 2016.
    WU Xiaopei and LIU Mingyan. In-situ soil moisture sensing: Measurement scheduling and estimation using compressive sensing[C]. ACM/IEEE, International Conference on Information Processing in Sensor Networks, Beijing, China, 2012: 1–11. doi: 10.1109/IPSN.2012.6920949.
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  2069
  • HTML全文浏览量:  799
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-01
  • 修回日期:  2018-10-29
  • 网络出版日期:  2018-11-19
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回