高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度信息熵的雷达辐射源信号识别

黄颖坤 金炜东 葛鹏 李冰

黄颖坤, 金炜东, 葛鹏, 李冰. 基于多尺度信息熵的雷达辐射源信号识别[J]. 电子与信息学报, 2019, 41(5): 1084-1091. doi: 10.11999/JEIT180535
引用本文: 黄颖坤, 金炜东, 葛鹏, 李冰. 基于多尺度信息熵的雷达辐射源信号识别[J]. 电子与信息学报, 2019, 41(5): 1084-1091. doi: 10.11999/JEIT180535
Yingkun HUANG, Weidong JIN, Peng GE, Bing LI. Radar Emitter Signal Identification Based on Multi-scale Information Entropy[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1084-1091. doi: 10.11999/JEIT180535
Citation: Yingkun HUANG, Weidong JIN, Peng GE, Bing LI. Radar Emitter Signal Identification Based on Multi-scale Information Entropy[J]. Journal of Electronics & Information Technology, 2019, 41(5): 1084-1091. doi: 10.11999/JEIT180535

基于多尺度信息熵的雷达辐射源信号识别

doi: 10.11999/JEIT180535
基金项目: 国家重点研发计划项目(2016YFB1200401-102F),中央高校基本科研业务费专项资金(2682017CX046)
详细信息
    作者简介:

    黄颖坤:男,1989年生,博士生,研究方向为雷达信号处理,机器学习

    金炜东:男,1959年生,教授,博士生导师,研究方向为智能信息处理、系统仿真与优化方法

    葛鹏:男,1986年生,讲师,研究方向为雷达信号处理,电子对抗

    李冰:女,1988年生,讲师,研究方向为电磁场与电磁波,微波成像

    通讯作者:

    金炜东 wdjin@home.swjtu.edu.cn

  • 中图分类号: TN95

Radar Emitter Signal Identification Based on Multi-scale Information Entropy

Funds: The National Key Research and Development Program (2016YFB1200401-102F), The Fundamental Research Funds for the Central Universities (2682017CX046)
  • 摘要:

    随着雷达信号的日益复杂,从实数序列中提取特征变得越来越困难,但当它们表示成符号序列时,通常能更容易地挖掘出有效的特征参数。因此,该文提出一种基于多尺度信息熵(MSIE)的雷达信号识别方法。首先通过符号聚合近似(SAX)算法在不同字符集尺度下将雷达信号转换为符号化序列;然后联合各符号序列的信息熵值,组成MSIE特征向量;最后,使用k邻近算法(k-NN)作为分类器实现雷达信号的分类识别。通过仿真6种典型的雷达信号进行验证,结果表明该方法在信噪比(SNR)为5 dB时,不同雷达信号的识别正确率大于90%,并且优于传统的基于复杂度特征(盒维数和稀疏性)的识别方法。

  • 图  1  6类雷达信号的SAX符号化序列

    图  2  修正的信息熵与SNR的关系图

    图  3  基于多尺度信息熵的雷达信号识别方法

    图  4  信噪比从5~20 dB时基于信息熵的数据分布图

    图  5  基于多尺度信息熵识别结果的混淆矩阵

    图  6  基于小波脊频级联特征识别结果的混淆矩阵

    图  7  信噪比从5~20 dB时基于复杂度的数据分布图

    表  1  参数a从3~8的等概率断点查询表[12]

    断点(${\beta _i}$)字符集大小(a)
    345678
    ${\beta _{{1}}}$0.430.670.840.971.071.15
    ${\beta _{{2}}}$0.4300.250.430.570.67
    ${\beta _{{3}}}$0.670.2500.180.32
    ${\beta _{{4}}}$0.840.430.180
    ${\beta _{{5}}}$0.970.570.32
    ${\beta _{{6}}}$1.070.67
    ${\beta _{{7}}}$1.15
    下载: 导出CSV

    表  2  不同SNR下6种雷达信号的识别率

    雷达信号 信噪比SNR (dB)
    20 15 10 5
    LFM 1.000 1.000 1.000 0.985
    CP 1.000 1.000 1.000 1.000
    BPSK 0.975 0.990 0.990 1.000
    BFSK 0.930 0.910 0.800 0.700
    NLFM 1.000 1.000 1.000 1.000
    COSTAS 1.000 1.000 1.000 1.000
    下载: 导出CSV

    表  3  提取两种特征耗费的时间对比

    特征向量 耗费时间(s)
    WRFCCF 135.102
    MSIE 1.704
    下载: 导出CSV

    表  4  两种方法的总体识别正确率比较(%)

    识别方法 总体识别率
    WRFCCF+k-NN 92.13
    MSIE+k-NN 95.63
    下载: 导出CSV

    表  5  3种方法的总体识别正确率比较(%)

    识别方法信噪比SNR(dB)
    2015105
    MSIE+k-NN98.4297.2594.2591.25
    CC+k-NN80.2573.0854.33<50
    SIE+k-NN81.4279.0871.2562.92
    下载: 导出CSV
  • WILEY R G. ELINT: The Interception and Analysis of Radar Signals[M]. Norwood, USA: Artech House, 2006: 1–15.
    韩俊, 何明浩, 朱振波, 等. 基于复杂度特征的未知雷达辐射源信号分选[J]. 电子与信息学报, 2009, 31(11): 2552–2556.

    HAN Jun, HE Minghao, ZHU Zhenbo, et al. Sorting unknown radar emitter signal based on the complexity characteristics[J]. Journal of Electronics &Information Technology, 2009, 31(11): 2552–2556.
    曲志昱, 毛校洁, 侯长波. 基于奇异值熵和分形维数的雷达信号识别[J]. 系统工程与电子技术, 2018, 40(2): 303–307. doi: 10.3969/j.issn.1001-506X.2018.02.10

    QU Zhiyu, MAO Xiaojie, and HOU Changbo. Radar signal recognition based on singular value entropy and fractal dimension[J]. Systems Engineering and Electronics, 2018, 40(2): 303–307. doi: 10.3969/j.issn.1001-506X.2018.02.10
    LI Jingchao and YING Yulong. Radar signal recognition algorithm based on entropy theory[C]. Proceedings of the 2nd International Conference on Systems and Informatics, Shanghai, China, 2014: 718–723.
    GUO Yuanyuan and ZHANG Xudong. Radar signal classification based on cascade of STFT, PCA and naïve Bayes[C]. Proceedings of the 7th International Conference on Intelligent Systems, Modelling and Simulation, Bangkok, Thailand, 2016: 191–196.
    DUDCZYK J. A method of feature selection in the aspect of specific identification of radar signals[J]. Bulletin of the Polish Academy of Sciences Technical Sciences, 2017, 65(1): 113–119. doi: 10.1515/bpasts-2017-0014
    GUO Qiang, NAN Polong, and WAN Jian. Signal classification method based on data mining for multi-mode radar[J]. Journal of Systems Engineering and Electronics, 2016, 27(5): 1010–1017. doi: 10.21629/JSEE.2016.05.09
    KONOPKO K, GRISHIN Y P, and JAŃCZAK D. Radar signal recognition based on time-frequency representations and multidimensional probability density function estimator[C]. Proceedings of 2015 Signal Processing Symposium, Dębe, Poland, 2015: 1–6.
    陈韬伟, 金炜东. 雷达辐射源信号符号化脉内特征提取方法[J]. 数据采集与处理, 2008, 23(5): 521–526. doi: 10.3969/j.issn.1004-9037.2008.05.004

    CHEN Taowei and JIN Weidong. Intra-pulse feature extraction of radar emitter signals based on symbolization method[J]. Journal of Data Acquisition &Processing, 2008, 23(5): 521–526. doi: 10.3969/j.issn.1004-9037.2008.05.004
    CHEN Taowei and JIN Weidong. Feature extraction of radar emitter signals based on symbolic time series analysis[C]. Proceedings of 2007 International Conference on Wavelet Analysis and Pattern Recognition, Beijing, China, 2007: 1277–1282.
    CHEN Taowei, LIU Zugen, LI Jie, et al. Symbolic time series analysis for measuring complexity in radar emitter signals[C]. Proceedings of the 7th International Congress on Image and Signal Processing, Dalian, China, 2014: 918–922.
    LIN J, KEOGH E, WEI Li, et al. Experiencing SAX: A novel symbolic representation of time series[J]. Data Mining and Knowledge Discovery, 2007, 15(2): 107–144. doi: 10.1007/s10618-007-0064-z
    SONG Wei, WANG Zhiguang, ZHANG Fan, et al. Empirical study of symbolic aggregate approximation for time series classification[J]. Intelligent Data Analysis, 2017, 21(1): 135–150. doi: 10.3233/IDA-150351
    向馗, 蒋静坪. 时间序列的符号化方法研究[J]. 模式识别与人工智能, 2007, 20(2): 154–161. doi: 10.3969/j.issn.1003-6059.2007.02.003

    XIANG Kui and JIANG Jingping. Study on symbolization analysis of time series[J]. Pattern Recognition and Artificial Intelligence, 2007, 20(2): 154–161. doi: 10.3969/j.issn.1003-6059.2007.02.003
    KEOGH E, CHAKRABARTI K, PAZZANI M, et al. Dimensionality reduction for fast similarity search in large time series databases[J]. Knowledge and Information Systems, 2001, 3(3): 263–286. doi: 10.1007/PL00011669
    余志斌. 基于脉内特征的雷达辐射源信号识别研究[D]. [博士论文], 西南交通大学, 2010: 1–56.

    YU Zhibin. Study on radar emitter signal identification based on intra-pulse features[D]. [Ph.D. dissertation], Southwest Jiaotong University, 2010: 1–56.
    VAN DER MAATEN A and HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008(9): 2579–2605.
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  2949
  • HTML全文浏览量:  899
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-30
  • 修回日期:  2019-02-25
  • 网络出版日期:  2019-03-04
  • 刊出日期:  2019-05-01

目录

    /

    返回文章
    返回