高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压缩感知多目标无源定位中的字典适配方法

余东平 郭艳 李宁 杨思星 宋晓祥

余东平, 郭艳, 李宁, 杨思星, 宋晓祥. 压缩感知多目标无源定位中的字典适配方法[J]. 电子与信息学报, 2019, 41(4): 865-871. doi: 10.11999/JEIT180531
引用本文: 余东平, 郭艳, 李宁, 杨思星, 宋晓祥. 压缩感知多目标无源定位中的字典适配方法[J]. 电子与信息学报, 2019, 41(4): 865-871. doi: 10.11999/JEIT180531
Dongping YU, Yan GUO, Ning LI, Sixing YANG, Xiaoxiang SONG. Dictionary Refinement Method for Compressive Sensing Based Multi-target Device-free Localization[J]. Journal of Electronics & Information Technology, 2019, 41(4): 865-871. doi: 10.11999/JEIT180531
Citation: Dongping YU, Yan GUO, Ning LI, Sixing YANG, Xiaoxiang SONG. Dictionary Refinement Method for Compressive Sensing Based Multi-target Device-free Localization[J]. Journal of Electronics & Information Technology, 2019, 41(4): 865-871. doi: 10.11999/JEIT180531

压缩感知多目标无源定位中的字典适配方法

doi: 10.11999/JEIT180531
基金项目: 国家自然科学基金(61871400, 61571463),江苏省自然科学基金(BK20171401)
详细信息
    作者简介:

    余东平:男,1989年生,博士生,研究方向为信号处理、无线传感器网络定位

    郭艳:女,1971年生,教授,博士生导师,研究方向为信号处理、压缩感知以及波束形成

    李宁:男,1967年生,副教授,研究方向为认知无线电、自组织网

    杨思星:女,1992年生,博士生,研究方向为信号处理、无源目标定位

    通讯作者:

    郭艳 guoyan_1029@sina.com

  • 中图分类号: TN911.7

Dictionary Refinement Method for Compressive Sensing Based Multi-target Device-free Localization

Funds: The National Natural Science Foundation of China (61871400, 61571463), The Natural Science Foundation of Jiangsu Province (BK20171401)
  • 摘要:

    该文针对压缩感知多目标无源定位在无线定位环境中的字典失配问题,提出基于变分期望最大化算法的字典适配方法。该方法首先根据鞍面模型建立无源字典,并将与定位环境相关的字典参数作为可调参数。然后,为目标位置向量建立两层的混合高斯先验模型以诱导其稀疏性。最后,利用变分期望最大化算法估计隐藏变量的后验分布以及优化字典环境参数,实现多目标位置估计和字典适配。仿真结果表明,相较于传统的压缩感知多目标无源定位方法,在变化的无线定位环境下,所提定位方法的性能优势尤为明显。

  • 图  1  压缩感知多目标无源定位基本场景

    图  2  两层混合高斯先验模型

    图  3  不同时刻(t=1, 5, 10)字典原子

    图  4  定位性能与环境变化的关系

    图  5  平均定位误差的累积分布函数

    图  6  平均定位误差与目标个数的关系

    表  1  目标位置估计算法

     (1) 令${\gamma _{{\text{th}}}} = {10^{ - 3}}$, ${r_{\max }} = {10^3}$, ${\eta _{{\text{th}}}} = - 10\;{\text{dB}}$, $\gamma = \tau = 0$。
     (2) while($\gamma \ge {\gamma _{{\text{th}}}}$或$r \le {r_{\max }}$)do
     (3)    根据式(17)和式(18),计算${{Σ}} $和${{μ}} $;
     (4)    根据式(20)和式(21),更新参数${a^ * }$和${b^ * }$;
     (5)    根据式(23)和式(24),更新参数${c^ * }$和$d_n^ * $;
     (6)    while($\tau \le {\tau _{\max }}$)do
     (7)       根据式(30)更新$\rho $;
     (8)    end while
     (9)    令$\gamma \leftarrow \parallel {{y}} - {{Φ}} ({\rho ^ * }){{μ}} \parallel_2^2$, $r \leftarrow r + 1$;
     (10) end while
     (11) $\forall n \in \{ 1,2, ·\!·\!· , N\} $,若$20\lg ({\mu _n}/\mathop {\max }\nolimits_i |{\mu _i}|) < {\eta _{{\text{th}}}}$,则${\mu _n} \!=\! 0$;
     (12) 令恢复的位置向量$\hat {{θ}} = {{μ }}$,目标个数$\hat K = |\hat {{θ}} |$。
    下载: 导出CSV
  • WANG Jie, GAO Qinhua, PAN Miao, et al. Device-free wireless sensing: Challenges, opportunities, and applications[J]. IEEE Network, 2018, 32(2): 132–137 doi: 10.1109/MNET.2017.1700133
    YOUSSEF M, MAH M, and AGRAWALA A. Challenges: Device-free passive localization for wireless environments[C]. Proceedings of the ACM MobiCom’07, Montreal, 2007: 222–229. doi: 10.1145/1287853.1287880.
    ZHANG Dian, MA Jian, CHEN Quanbin, et al. An RF-based system for tracking transceiver-free objects[C]. Proceeding of the 5th IEEE International Conference on Pervasive Computing and Communications (PerCom’07), White Plains, 2007: 135–144. doi: 10.1109/percom.2007.8.
    WANG Ju, CHEN Xiaojiang, FANG Dingyi, et al. Transferring compressive-sensing-based device-free localization across target diversity[J]. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2397–2409 doi: 10.1109/TIE.2014.2360140
    KE Wei, WANG Tingting, and SHAO Jianhua. CS-based device-free localization in the presence of model errors[C]. Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, 2016: 4443–4447. doi: 10.1109/ICASSP.2016.7472517.
    WANG Ju, FANG Dingyi, and YANG Zhe. E-HIPA: An energy-efficient framework for high-precision multi-target adaptive device-free localization[J]. IEEE Transactions on Mobile Computing, 2017, 16(3): 716–729 doi: 10.1109/TMC.2016.2567396
    TALAMPAS M and LOW K. A geometric filter algorithm for robust device-free localization in wireless networks[J]. IEEE Transactions on Industrial Informatics, 2016, 12(5): 1670–1678 doi: 10.1109/TII.2015.2433211
    LEI Qian, ZHANG Haijian, SUN Hong, et al. Fingerprint-based device-free localization in changing environments using enhanced channel selection and logistic regression[J]. IEEE Access, 2018, 6: 2569–2577 doi: 10.1109/ACCESS.2017.2784387
    CHEN Xi, MA Chen, ALLEGUE M, et al. Taming the inconsistency of Wi-Fi fingerprints for device-free passive indoor localization[C]. Proceeding of the IEEE INFOCOM 2017, Atlanta, 2017: 1–9. doi: 10.1109/INFOCOM.2017.8057185.
    WILSON J and PATWARI N. Ratio tomographic imaging with wireless networks[J]. IEEE Transactions on Mobile Computing, 2010, 9(5): 621–632 doi: 10.1109/TMC.2009.174
    WANG Qinghua, YIGITLER H, JANTTI R, et al. Localizing multiple objects using radio tomographic imaging technology[J]. IEEE Transactions on Vehicular Technology, 2016, 65(5): 3641–3656 doi: 10.1109/TVT.2015.2432038
    DONOHO D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306 doi: 10.1109/TIT.2006.871582
    WANG Ju, FANG Dingyi, CHEN Xiaojing, et al. LCS: Compressive sensing based device-free localization for multiple targets in sensor networks[C]. Proceeding of the IEEE INFOCOM 2013, Turin, 2013: 14–19. doi: 10.1109/INFCOM.2013.6566752.
    SONG Chaobing and XIA Shutao. Sparse signal recovery by minimization under restricted isometry property[J]. IEEE Signal Processing Letters, 2014, 21(9): 1154–1158 doi: 10.1109/LSP.2014.2323238
    WANG Jie, GAO Qinhua, PAN Miao, et al. Towards accurate device-free wireless localization with a saddle surface model[J]. IEEE Transactions on Vehicular Technology, 2016, 65(8): 6665–6677 doi: 10.1109/TVT.2015.2476495
    SEEGER M and WIPF D. Variational Bayesian inference techniques[J]. IEEE Signal Processing Magazine, 2010, 27(6): 81–91 doi: 10.1109/MSP.2010.938082
    CANDES E and WAKIN M. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21–30 doi: 10.1109/MSP.2007.914731
    JI Shihao, XUE Ya, and CARIN L. Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346–2356 doi: 10.1109/TSP.2007.914345
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  2079
  • HTML全文浏览量:  725
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-30
  • 修回日期:  2018-11-06
  • 网络出版日期:  2018-11-16
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回