高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于模糊神经网络模糊C均值聚类的双偏振气象雷达降水粒子分类方法

李海 任嘉伟 尚金雷

李海, 任嘉伟, 尚金雷. 一种基于模糊神经网络–模糊C均值聚类的双偏振气象雷达降水粒子分类方法[J]. 电子与信息学报, 2019, 41(4): 809-815. doi: 10.11999/JEIT180529
引用本文: 李海, 任嘉伟, 尚金雷. 一种基于模糊神经网络模糊C均值聚类的双偏振气象雷达降水粒子分类方法[J]. 电子与信息学报, 2019, 41(4): 809-815. doi: 10.11999/JEIT180529
Hai LI, Jiawei REN, Jinlei SHANG. Hydrometeor Classification Method in Dual-polarization Weather Radar Based on Fuzzy Neural Network-fuzzy C-means[J]. Journal of Electronics & Information Technology, 2019, 41(4): 809-815. doi: 10.11999/JEIT180529
Citation: Hai LI, Jiawei REN, Jinlei SHANG. Hydrometeor Classification Method in Dual-polarization Weather Radar Based on Fuzzy Neural Network-fuzzy C-means[J]. Journal of Electronics & Information Technology, 2019, 41(4): 809-815. doi: 10.11999/JEIT180529

一种基于模糊神经网络模糊C均值聚类的双偏振气象雷达降水粒子分类方法

doi: 10.11999/JEIT180529
基金项目: 国家自然科学基金(U1733116, U1633106, 61471365),中国民航大学蓝天青年学者培养经费,中央高校基本科研业务费项目(3122017007)
详细信息
    作者简介:

    李海:男,1976年生,教授,硕士生导师,主要研究方向为机载气象雷达信号处理及机器学习在气象雷达中的应用、分布式目标检测与参数估计、自适应信号处理等

    任嘉伟:男,1993年生,硕士生,研究方向为双偏振气象雷达信号处理

    尚金雷:男,1993年生,硕士生,研究方向为双偏振气象雷达信号处理

    通讯作者:

    李海 elisha1976@163.com

  • 中图分类号: TN959.4

Hydrometeor Classification Method in Dual-polarization Weather Radar Based on Fuzzy Neural Network-fuzzy C-means

Funds: The National Nature Science Foundation of China (U1733116, U1633106, 61471365), The Foundation for Sky Young Scholars of Civil Aviation University of China, The Fundamental Research Funds for the Central Universitives (3122017007)
  • 摘要:

    对于地杂波存在情况下的降水粒子分类问题,传统方法在不同的天气及环境条件下会产生较大分类误差。该文提出一种基于模糊神经网络(FNN)-模糊C均值聚类(FCM)算法的双偏振气象雷达降水粒子分类方法。该方法首先利用双偏振气象雷达在晴空模式下接收的地杂波数据训练FNN,自适应地计算地杂波各偏振参量隶属函数的参数,然后利用训练得到的地杂波隶属函数对降水模式下的地杂波进行抑制,最后采用模糊C均值聚类算法对地杂波抑制后的回波进行降水粒子分类。对实测数据的处理结果表明,该方法能够有效地抑制地杂波并获得较为精细的降水粒子分类结果。

  • 图  1  FNN结构图

    图  2  FNN-FCM方法得到的地杂波抑制结果(2017.08.17/06)

    图  3  模糊逻辑方法得到的分类结果(2017.08.17/06)

    图  4  NOAA提供的降水粒子分类结果(2017.08.17/06)

    图  5  降水粒子分类结果(2017.08.17/06)

    表  1  降水粒子及地杂波${{{Z}}_{\rm{H}}}$隶属函数参数值

    粒子类型毛毛雨冰晶干雪湿雪高密度霰冰雹大雨滴地杂波
    a29.0015.5022.0017.0022.009.0012.009.0025.10
    b10.0010.0020.0015.0010.006.0010.0010.0020.00
    m2.0041.50–3.0017.0021.0049.0058.0057.00–1.10
    下载: 导出CSV

    表  2  各类别粒子数量及占比(2017.08.17/06)

    类别FNN-FCM方法模糊逻辑方法
    数据个数百分比(%)数据个数百分比(%)
    毛毛雨11338739.8221745057.59
    216637.61147893.92
    冰晶36541.28317298.40
    干雪5353218.80330328.75
    湿雪265639.33100582.66
    高密度霰197966.95129213.42
    冰雹101743.5748741.29
    大雨滴3598512.645272713.97
    数据整体286724100377580100
    下载: 导出CSV
  • 李金辉, 樊鹏. 冰雹云提前识别及预警的研究[J]. 南京气象学院学报, 2007, 30(1): 114–119 doi: 10.3969/j.issn.1674-7097.2007.01.016

    LI Jinhui and FAN Peng. Investigation on early identification and warning of hail clouds[J]. Journal of Nanjing Institute of Meteorology, 2007, 30(1): 114–119 doi: 10.3969/j.issn.1674-7097.2007.01.016
    孟旭航, 刘玉玲, 白洁. 航线天气预报中航迹规划仿真研究[J]. 系统仿真学报, 2006, 18(2): 832–836 doi: 10.3969/j.issn.1004-731X.2006.z2.235

    MENG Xuhang, LIU Yuling, and BAI Jie. Researches of computer simulation on path planning in airway weather forecast[J]. Journal of System Simulation, 2006, 18(2): 832–836 doi: 10.3969/j.issn.1004-731X.2006.z2.235
    楼小凤, 师宇, 李集明. 云降水和人工影响天气催化数值模式的发展及应用[J]. 气象科技进展, 2016, 6(3): 75–82 doi: 10.3969/j.issn.2095-1973.2016.03.010

    LOU Xiaofeng, SHI Yu, and LI Jiming. Development and application of the cloud and seeding models in weather modification[J]. Advances in Meteorological Science and Technology, 2016, 6(3): 75–82 doi: 10.3969/j.issn.2095-1973.2016.03.010
    杨通晓, 袁招洪. 多波段双偏振天气雷达识别降水类型的模拟研究[J]. 高原气象, 2017, 36(1): 241–255 doi: 10.7522/j.issn.1000-0534.2016.00016

    YANG Tongxiao and YUAN Zhaohong. Simulation research on hydrometeor classification by multi-wavelength dual linear polarization Doppler radar[J]. Plateau Meteorology, 2017, 36(1): 241–255 doi: 10.7522/j.issn.1000-0534.2016.00016
    唐顺仙, 吕达仁, 何建新, 等. 天气雷达技术研究进展及其在我国天气探测中的应用[J]. 遥感技术与应用, 2017, 32(1): 1–13 doi: 10.11873/j.issn.1004-0323.2017.1.0001

    TANG Shunxian, LÜ Daren, HE Jianxin, et al. Research of weather radar technology and application on Chinese weather observation[J]. Remote Sensing Technology and Application, 2017, 32(1): 1–13 doi: 10.11873/j.issn.1004-0323.2017.1.0001
    宗蓉, 陈超, 潘国盛. 基于模糊逻辑的双偏振多普勒雷达地物杂波抑制方法的初步应用[J]. 广东气象, 2017, 39(6): 56–59 doi: 10.3969/j.issn.1007-6190.2017.06.015

    ZONG Rong, CHEN Chao, and PAN Guosheng. Preliminary application of dual-polarization Doppler radar clutter suppression based on fuzzy logic[J]. Guangdong Meteorology, 2017, 39(6): 56–59 doi: 10.3969/j.issn.1007-6190.2017.06.015
    GIANGRANDE S E and RYZHKOV A V. Estimation of rainfall based on the results of polarimetric echo classification[J]. Applied Meteorology Climatological, 2008, 47(4): 2445–2462 doi: 10.1175/2008JAMC1753.1
    HUBBERT J and BRINGI V N. An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements[J]. Journal Atmospheric Oceanic Technology, 1995, 12(3): 643–648 doi: 10.1175/1520-0426(1995)012<0643:AIFTFT>2.0.CO;2
    汪月霞, 林伙海, 何建新, 等. 双偏振天气雷达降水粒子相态识别研究[C]. 第30届中国气象学会年会, 南京, 中国, 2014: 1–6.

    WANG Yuexia, LIN Huohai, HE Jianxin, et al. Study on hydrometeors identification based on polarimetric radar[C]. 30th Annual Meeting of the Chinese Meteorological Society, Nanjing, China, 2014: 1–6.
    HOLLER H, BRINGI V N, HUBBERT J, et al. Life cycle and precipitation formation in a hybrid-type hailstorm revealed by polarimetric and Doppler radar measurements[J]. Atmosphere Science, 1994, 51(12): 2500–2522 doi: 10.1175/1520-0469(1994)051<2500:LCAPFI>2.0.CO;2
    冉元波, 孙敏, 高梦清, 等. 双偏振天气雷达水凝物识别研究[J]. 成都信息工程大学学报, 2017, 32(6): 590–596 doi: 10.16836/j.cnki.jcuit.2017.06.003

    RAN Yuanbo, SUN Min, GAO Mengqing, et al. Study on hydrometeor identification based on deep learning[J]. Journal of Chengdu University of Information Technology, 2017, 32(6): 590–596 doi: 10.16836/j.cnki.jcuit.2017.06.003
    许哲万, 李晶皎, 王爱侠, 等. 一种基于改进T-S模糊推理的模糊神经网络学习算法[J]. 计算机科学, 2011, 38(11): 196–219 doi: 10.3969/j.issn.1002-137X.2011.11.044

    XU Zhewan, LI Jingjiao, WANG Aixia, et al. Training algorithm of fuzzy neural network based on improved T-S fuzzy reasoning[J]. Computer Science, 2011, 38(11): 196–219 doi: 10.3969/j.issn.1002-137X.2011.11.044
    BANDYOPADHYAY S and MAULIK U. An evolutionary technique based on K-means algorithm for optimal clustering in ${\mathbb{R}}_N$ [J]. Information Sciences, 2002, 146(1/4): 221–237 doi: 10.1016/S0020-0255(02)00208-6
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1982
  • HTML全文浏览量:  858
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-29
  • 修回日期:  2018-11-30
  • 网络出版日期:  2018-12-10
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回