Development and Prospect of Radar and Communication Integration
-
摘要:
雷达通信一体化通过一套共用的硬件设备实现雷达探测与通信传输,相比于传统单一的雷达或者通信设备,更易集成化、小型化和高效利用频谱。该文系统地介绍了雷达通信一体化的原理与特点,指出了一体化研究中亟需解决的问题,从典型的基于线性调频(LFM)的雷达通信一体化信号出发,全面梳理了国内外针对雷达通信一体化的相关研究,着重归纳了正交频分复用(OFDM)与多入多出(MIMO)技术在雷达通信一体化波形设计、信号处理、一体化系统设计等几个重点方向的研究进展,并分析了雷达通信一体化未来的可能发展趋势及其在军事领域和民用智能交通领域的重要应用前景。
Abstract:Radar communication integration realizes radar detection and communication transmission via shared hardware equipment, the integration is easier to be integrated, miniaturized and utilize effectively spectrum compared with traditional individual radar and communication devices. This paper systematically introduces the principles and characteristics of radar communication integration, presents the urgent problems need to be solved within integration investigation, starting from typical radar communication integration signal based on Linear Frequency Modulation (LFM), this paper reviews comprehensively the related research on radar communication integration and primarily summarizes the research developments of Orthogonal Frequency Division Multiplexing (OFDM) and Multi-Input Multi-Output (MIMO) techniques in critical directions including waveform design, signal processing and integrated system conception. Finally, the potential developing trend and significant application scenario in military and civilian intelligent transportation field of radar communication integration is analyzed.
-
杨瑞娟, 陈小民, 李晓柏, 等. 雷达通信一体化共享信号技术研究[J]. 空军预警学院学报, 2013, 27(1): 39–43. doi: 10.3969/j.issn.2095-5839.2013.01.010YANG Ruijuan, CHEN Xiaomin, LI Xiaobai, et al. Study of signal sharing technologies for integration of radar and communication systems[J]. Journal of Air Force Early Warning Academy, 2013, 27(1): 39–43. doi: 10.3969/j.issn.2095-5839.2013.01.010 GUPTA A and JHA R K. A survey of 5G network: Architecture and emerging technologies[J]. IEEE Access, 2015, 3: 1206–1232. doi: 10.1109/ACCESS.2015.2461602 SHANNON D B and ERIC L M. Overview of radar waveform diversity[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(11): 2–42. doi: 10.1109/MAES.2016.160071 LIN Zhiyuan and WEI Ping. Pulse position modulation time hopping ultra wideband sharing signal for radar and communication system[C]. CIE International Conference on Radar, Shanghai, China, 2007: 4–7. LIU Zhipeng, ZHANG Wenkang, and XU Shanfeng. Implementation on the integrated waveform of radar and communication[C]. International Conference on Communication, Circuits and Systems, Chengdu, China, 2013: 200–204. LI Qingyu, ZHANG Yu, PAN Changyong, et al. Waveform design for high speed radar-communication integration[C]. CIE International Conference on Radar, Guangzhou, China, 2016: 1–4. 李晓柏, 杨瑞娟, 程伟. 基于频率调制的多载波 Chirp 信号雷达通信一体化研究[J]. 电子与信息学报, 2013, 35(2): 406–412. doi: 10.3724/SP.J.1146.2012.00567LI Xiaobai, YANG Ruijuan, and CHENG Wei. Integrated radar and communication based on multicarrier frequency modulation Chirp signal[J]. Journal of Electronics &Information Technology, 2013, 35(2): 406–412. doi: 10.3724/SP.J.1146.2012.00567 CENK S, JOHN J, PATRICK M M, et al. A novel approach for embedding communication symbols into physical radar waveforms[C]. IEEE Radar Conference, Seattle, USA, 2017: 1498–1503. MICHAEL J N, ZHANG Zhiping, QU Yang, et al. Co-designed radar-communication using linear frequency modulation waveform[C]. Military Communications Conference, Baltimore, USA, 2016: 918–923. ZHANG Zhiping, QU Yang, DESSOURCES D A, et al. Co-designed radar-communication using linear frequency modulation waveform[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 28–35. doi: 10.1109/MAES.2016.150236 MACHAEL J N, ZHANG Zhiping, LORENZO L, et al. Mixed-modulated linear frequency modulated[J]. IET Radar, Sonar & Navigation, 2017, 11(2): 313–320. doi: 10.1049/iet-rsn.2016.0249 LI Xiaobai, YANG Ruijuan, ZHANG Zunquan, et al. Research of constructing method of complete complementary sequence in integrated radar and communication[C]. IEEE 11th International Conference on Signal Processing, Beijing, China, 2012, 3: 1729–1732. ZHANG Chaozhu and CHEN Qiang. Design of signal-sharing for radar and communication[C]. International Conference on Mechatronic Sciences, Electric Engineering and Computer(MEC), Shenyang, China, 2013: 1250–1253. ZHANG Yu, LI Qingyu, HUANG Ling, et al. A modified waveform design for radar-communication integration based on LFM-CPM[C]. Vehicular Technology Conference (VTC Spring), Sydney, Australia, 2017: 1–5. ZHANG Yu, LI Qingyu, HUANG Ling, et al. Waveform design for joint radar-communication with nonideal power amplifier and outband interference[C]. IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, USA, 2017: 1–6. XU Shaojian, CHEN Bing, and ZHANG Ping. Radar-communication integration based on DSSS techniques[C]. International Conference on Signal Processing, Beijing, China, 2006: 142–144. FRANKEN G E A, NIKOOKAR H, and GENDEREN P V. Doppler tolerance of OFDM-coded radar signals[C]. IEEE Radar Conference, Manchester, UK, 2006: 108–111. CHENG Shengjuan, WANG Wenqin, and SHAO Huaizong. Spread spectrum-coded OFDM chirp waveform diversity design[J]. IEEE Sensors Journal, 2015, 15(10): 5694–5700. doi: 10.1109/JSEN.2015.2448617 TIAN Xuanxuan and SONG Zhaohui. On radar and communication integrated system using OFDM signal[C]. IEEE Radar Conference, Seattle, USA, 2017: 318–323. JIN Shengcai and WU Wen. Joint communication and radar system based on multi-carrier interleave-division multiplexing[J]. Journal of Computational Information Systems, 2015, 11(2): 727–734. doi: 10.12733/jcis13161 LEVANON N. Multifrequency complementary phase-coded radar signal[J]. IEE Proceedings-Radar, Sonar and Navigation, 2000, 147(6): 276–284. doi: 10.1049/ip-rsn:20000734 WANG Wenqin, ZHENG Zhi, and ZHANG Shunsheng. OFDM chirp waveform diversity for co-designed radar-communication system[C]. 18th International Radar Symposium, Prague, Czech Republic, 2017: 1–9. LI Cong, BAO Weimin, XU Luping, et al. Radar communication integrated waveform design based on OFDM and circular shift sequence[J]. Hindawi Mathematical Problems in Engineering, 2017, 18(7): 1–10. doi: 10.1155/2017/9840172 SEBT M A, NOROUZI Y, SHEIKHI A, et al. OFDM radar signal design with optimized ambiguity function[C]. IEEE Radar Conference, Rome, Italy, 2008: 448–452. SATYABRATA S and ARYE N. Target detection in clutter using adaptive OFDM radar[J]. IEEE Signal Processing Letters, 2009, 16(7): 592–595. doi: 10.1109/LSP.2009.2020470 JIANG Yicheng and GUO Sai. Spaceborne radar-communication integration signal design for moving target detection[C]. IET International Radar Conference, Hangzhou, China, 2015: 1–6. SEBT M A, SHEIKHI A, and NAYEBI M M. Orthogonal frequency-division multiplexing radar signal design with optimised ambiguity function and low peak-to-average power ratio[J]. IET Radar, Sonar & Navigation, 2009, 3(2): 122–132. doi: 10.1049/iet-rsn:20080106 JOHN E, ZHANG Zhiping, MICHAEL W, et al. Multi-carrier radar waveforms for communications and detection[J]. IET Radar, Sonar & Navigation, 2017, 11(3): 444–452. doi: 10.1049/iet-rsn.2016.0244 JOHN E, ZHANG Zhiping, WU Zhiqiang, et al. Dual-use multicarrier waveform for radar detection and communication[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1265–1278. doi: 10.1109/TAES.2017.2780578 MUSSA A D, HAO Huan, WANG Xi, et al. Constant envelope chirped OFDM for power efficient radar communication[C]. IEEE Information Technology, Networking, Electronic and Automation Control Conference, Chongqing, China, 2016: 298–301. CHRISTIAN S and WERNER W. Joint integration of digital beam-forming radar with communication[C]. IET Radar Conference, Guilin, China, 2009: 1–4. WANG Zhaofeng, LIAO Guisheng, and YANG Zhiwei. A novel radar waveform based on space-frequency coding compatible with directional communication[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–5. ABOULNASR H, MOENESS G A, YIMIN D Z, et al. Signaling strategies for dual-function radar communications: An overview[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(10): 36–45. doi: 10.1109/MAES.2016.150225 ABOULNASR H, BRAHAM H, and BRIAN D R. A dual-function MIMO radar-communications system using frequency-hopping waveforms[C]. IEEE Radar Conference, Seattle, USA, 2017: 1721–1725. ABOULNASR H, MOENESS G A, YIMIN D Z, et al. Phase-modulation based dual-function radar communications[J]. IET Radar, Sonar & Navigation, 2016, 10(8): 1411–1421. doi: 10.1049/iet-rsn.2015.0484 ABOULNASR H, MOENESS G A, YIMIN D Z, et al. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2168–2181. doi: 10.1109/TSP.2015.2505667 ABOULNASR H, MOENESS G A, YIMIN D Z, et al. A dual function radar-communications system using sidelobe control and waveform diversity[C]. IEEE Radar Conference, Arlington, USA, 2015: 1260–1263. ABOULNASR H, SERGIY A V, and ARASH K. Transmit radiation pattern invariance in MIMO radar with application to DOA estimation[J]. IEEE Signal Processing Letters, 2015, 22(10): 1609–1613. doi: 10.1109/LSP.2015.2417220 ANASTASIOS D, LI Bo, MATHEW C, et al. Spectrum sharing between radar and communication systems: Can the privacy of the radar be preserved[C]. 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2017: 1285–1289. HUANG Ling, ZHANG Yu, LI Qingyu, et al. Phased array radar-based channel modeling and sparse channel estimation for an integrated radar and communication system[J]. IEEE Access, 2017, 5: 15468–15477. doi: 10.1109/ACCESS.2017.2731398 TIAN Xuanxuan, ZHANG Tingting, ZHANG Qinyu, et al. Waveform design and processing in OFDM based radar-communication integrated systems[C]. IEEE International Conference on Communications in China (ICCC), Qingdao, China, 2017: 1–6. SHADDRACK Y N, WANG Wenqin, and ABDUL B. A time-modulated FD-MIMO array for integrated radar and communication systems[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(6): 1–4. doi: 10.1109/LAWP.2018.2829729 MOMIN J, HANS Z, and YANG Xinshe. Sequence optimization for integrated radar and communication systems using meta-heuristic multiobjective methods[C]. IEEE Radar Conference, Seattle, USA, 2017: 502–507. YOKE L S, CHRISTIAN S, LARS R, et al. The OFDM joint radar-communication system: An overview[C]. International Conference on Advances in Satellite and Space Communications, Budapest, Hungary, 2011: 69–74. YOKE L S, CHRISTIAN S, and THOMAS Z. Interference cancellation for dynamic range improvement in an OFDM joint radar and communication system[C]. The 8th European Radar Conference, Manchester, UK, 2011: 333–336. YOKE L S, LARS R, CHRISTIAN S, et al. Extension of the OFDM joint radar-communication system for a multipath, multiuser scenario[C]. IEEE Radar Conference, Kansas City, USA, 2011: 718–723. YOKE L S, CHRISTIAN S, and THOMAS Z. One-stage selective interference cancellation for the OFDM joint radar-communication system[C]. The 7th German Microwave Conference, Ilmenau, Germany, 2012: 1–4. TIGREK R F, WIM J A, and PIET V G. OFDM signals as the radar waveform to solve doppler ambiguity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 130–143. doi: 10.1109/TAES.2012.6129625 BOUQUET E, SYLVAIN H, HAMED D, et al. An innovative and low complexity PAPR reduction technique for multicarrier systems[C]. The 9th European Conference on Wireless Technology, Manchester, UK, 2006: 162–165. LELLOUCH G, TRAN P, PRIBIC R, et al. OFDM waveforms for frequency agility and opportunities for Doppler processing in radar[C]. IEEE Radar Conference, Rome, Italy, 2008: 432–437. LELLOUCH G, TRAN P, and PATRICK V G. Wideband OFDM pulse burst and its capabilities for the Doppler processing in radar[C]. IEEE International Conference on Radar, Adelaide, Australia, 2008: 531–535. 刘永军, 廖桂生, 杨志伟, 等. 一种超分辨OFDM雷达通信一体化设计方法[J]. 电子与信息学报, 2016, 38(2): 425–433. doi: 10.11999/JEIT150320LIU Yongjun, LIAO Guisheng, YANG Zhiwei, et al. A super-resolution design method for integration of OFDM radar and communication[J]. Journal of Electronics &Information Technology, 2016, 38(2): 425–433. doi: 10.11999/JEIT150320 TIGREK R F, HEIJ W J A, and VAN G P. Multi-carrier radar waveform schemes for range and Doppler processing[C]. IEEE Radar Conference, Pasadena, USA, 2009: 1–5. DUAN Junqi. Multicarrier coherent pulse shaping for radar and corresponding signal processing[C]. The Eighth International Conference on Electronic Measurement and Instruments, Xi’an, China, 2007: 843–847. MOHSENI R, SHEIKHI A, and MASNADI S. A new approach to compress multicarrier phase-coded signals[C]. IEEE Radar Conference, Rome, Italy, 2008: 442–447. MOHSENI R, SHEIKHI A, and MASNADI S. Compression of multicarrier phase-coded radar signals with low sampling rate[C]. IEEE International Conference on Radar, Adelaide, Australia, 2008: 718–721. GABBIEL L, AMIT M, and MICHAEL I. Impact of the Doppler modulation on the range and Doppler processing in OFDM radar[C]. IEEE Radar Conference, Cincinnati, USA, 2014: 803–808. 顾陈, 张劲东, 朱晓华. 基于OFDM的多载波调制雷达系统信号处理及检测[J]. 电子与信息学报, 2009, 31(6): 1298–1300. doi: 10.3724/SP.J.1146.2008.00876GU Chen, ZHANG Jindong, and ZHU Xiaohua. Signal processing and detecting for multicarrier modulated radar system based on OFDM[J]. Journal of Electronics &Information Technology, 2009, 31(6): 1298–1300. doi: 10.3724/SP.J.1146.2008.00876 BRIAN D C, SARAH A S, and LAWRENCE C. Electromagnetic interference to radar receivers due to in-band OFDM communications systems[C]. IEEE International Symposium on Electromagnetic Compatibility (EMC), Denver, USA, 2013: 72–75. JONATHAN S and DMITRIY G. Multifrequency OFDM SAR in presence of deception jamming[J]. EURASIP Journal on Advances in Signal Processing, 2010, 10(3): 1–13. doi: 10.1155/2010/451851 WANG Wenqin. Multichannel SAR using waveform diversity and distinct carrier frequency for ground moving target indication[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11): 5040–5051. doi: 10.1109/JSTARS.2015.2485166 MECCA V F, RAMAKRISHMAN D, and KROLIK J L. MIMO radar space-time adaptive processing for multipath clutter mitigation[C]. IEEE Workshop on Sensor Array and Multichannel Processing, Waltham, USA, 2006: 249–253. WANG Zhaofeng, LIAO Guisheng, and YANG Zhiwei. Space-frequency modulation radar-communication and mismatched filterring[J]. IEEE Access, 2018, 6: 24837–24845. doi: 10.1109/ACCESS.2018.2829731 LI Bo and ATHINA P. Radar precoding for spectrum sharing between matrix completion based MIMO radars and a MIMO communication system[C]. IEEE Global Conference on Signal and Information Processing, Orlando, USA, 2015: 737–741. LI Bo and ATHINA P. MIMO radar and communication spectrum sharing with cutter mitigation[C]. IEEE Radar Conference, Philadelphia, USA, 2016: 1–6. LI Bo and ATHINA P. Joint transmit designs for co-existence of MIMO wireless communications and sparse sensing radars in clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2846–2864. doi: 10.1109/TAES.2017.2717518 LI Bo and ATHINA P. Spectrum sharing between matrix completion based MIMO radars and a MIMO communication system[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Brisbane, Australia, 2015: 2444–2448. LI Bo, ATHINA P, and WADE T. Optimum co-design for spectrum sharing between matrix completion based MIMO radars and a MIMO communication system[J]. IEEE Transactions on Signal Processing, 2016, 64(17): 4562–4575. doi: 10.1109/TSP.2016.2569479 QIAN Junhui, MARCO L, ZHENG Le, et al. Joint system design for coexistence of MIMO radar and MIMO communication[J]. IEEE Transactions on Signal Processing, 2018, 66(13): 3504–3519. doi: 10.1109/TSP.2018.2831624 LIU Fan, CHRISTOS M, LI Ang, et al. MIMO radar and cellular coexistence: A power-efficient approach enabled by interference exploitation[J]. IEEE Transactions on Signal Processing, 2018, 66(14): 3681–3695. doi: 10.1109/TSP.2018.2833813 LIU Yongjun, LIAO Guisheng, and YANG Zhiwei. Range and angle estimation for MIMO-OFDM integrated radar and communication systems[C]. CIE International Conference on Radar, Guangzhou, China, 2016: 1–4. DIMITRIY G, JONATHAN S, KYLE K, et al. Wideband OFDM system for radar and communications[C]. IEEE Radar Conference, Pasadena, USA, 2009: 1–6. CHRISTIAN S, THOMAS Z, and WERNER W. An OFDM system concept for joint radar and communications operations[C]. IEEE Vehicular Technology Conference, Barcelona, Spain, 2009: 1–5. CHRISTIAN S and WERNER W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110 LI Jinming, PENG Laixian, YE Yilei, et al. A neighbor discovery algorithm in network of radar and communication integrated system[C]. 17th International Conference on Computational Science and Engineering, Chengdu, China, 2014: 1142–1149. MARIAN B and VISA K. Delay estimation method for coexisting radar and wireless communication systems[C]. IEEE Radar Conference, Seattle, USA, 2017: 1157–1161.